cho x; y; z co tong chia het cho 6 cmr (x+y)(y+z)(x+z) - 2xyz chia het cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




DK: x>=0
Ta co VT=(x2-x+1/4) +(x-\(\sqrt{x}\) +1/4)
=(x-1/2)2+(\(\sqrt{x}\)--1/2)2 >=0 voi x>=0
den day co 2 cach de giai tiep
1. ban hay xet X>=1/2==> DPCM va 1/2>x>=0 ==>DPCM
2. giai phuong trinh tren cho VT=0 ban duoc ket qua vo nghiem nghia la vt khong co gia tri nao cua x de =0 tuc la vt>0 ==>DPCM

khi bình phương đã tới một điểm nhất định thì ta phải căn ra để quy ước ở đây ta có 7+4 can3 suy ra bình phương đặt phải lấy công thức ms quý 7+4+3 về n+ghvay 1trenve
VT = \(\sqrt{\left(2+\sqrt{3}\right)^2}\)+\(\sqrt{\left(2-\sqrt{3}\right)^2}\)= (2 + \(\sqrt{3}\)) + (2 - \(\sqrt{3}\)) = 4

Ta có:(Sử dụng bdt cô-si) \(\frac{bc}{a^2b+a^2c}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)
=> \(\frac{bc}{a^2b+a^2c}\ge\frac{1}{a}-\frac{b+c}{4bc}\)
Chứng minh tương tự:\(\frac{ca}{b^2a+b^2c}\ge\frac{1}{b}-\frac{c+a}{4ca}\);\(\frac{ab}{c^2a+c^2b}\ge\frac{1}{c}-\frac{a+b}{4ab}\)
Từ đó \(P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\right)\)
Mà\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)=> \(P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge9\)(do a+b+c<=1)=> \(P\ge\frac{1}{2}.9=\frac{9}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a+b+c=1\\\frac{bc}{a^2b+a^2c}=\frac{b+c}{4bc}\\a,b,c>0\end{cases}};...\)
<=> \(a=b=c=\frac{1}{3}\)
Vậy\(MinP=\frac{9}{2}\)khi a=b=c=1/3