K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
21 tháng 12 2020

ta có 

\(4\left(x^2+xy+y^2\right)\ge3\left(x+y\right)^2\Leftrightarrow\left(x-y\right)^2\ge0\) vì thế \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)

hoàn toàn tương tự ta sẽ có 

\(P\ge\frac{\sqrt{3}}{2}\left(x+y\right)+\frac{\sqrt{3}}{2}\left(y+z\right)+\frac{\sqrt{3}}{2}\left(x+z\right)\)

hay

\(P\ge\sqrt{3}\left(x+y+z\right)=3\sqrt{3}\)

dấu bằng xảy ra khi x=y=z=1

21 tháng 12 2020

 Ta có: \(P=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(=\sqrt{\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2}+\sqrt{\frac{3}{4}\left(y+z\right)^2+\frac{1}{4}\left(y-z\right)^2}+\sqrt{\frac{3}{4}\left(z+x\right)^2+\frac{1}{4}\left(x-y\right)^2}\)\(\ge\sqrt{\frac{3}{4}\left(x+y\right)^2}+\sqrt{\frac{3}{4}\left(y+z\right)^2}+\sqrt{\frac{3}{4}\left(z+x\right)^2}=\sqrt{3}\left(x+y+z\right)=3\sqrt{3}\)

Đẳng thức xảy ra khi x = y = z = 1

18 tháng 12 2020

Áp dụng giả thiết và bất đẳng thức AM - GM, ta có: \(VT=\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}\)\(=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+x\right)\left(y+z\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)\(=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{y+z}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{y+z}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Giúp iêm bài 2 dới :)))

Bài tập Tất cả

0
AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

Giả sử các điểm có vị trí như hình vẽ. Trong đó: 

K là tâm đường tròn nội tiếp tam giác AMN

\(KL\perp AM; IU\perp AB (L\in AM; U\in AB)\)

Ký hiệu \(p_i\) là nửa chu vi tam giác \(i\)

\(A,K,I\) thẳng hàng vì cùng nằm trên đường phân giác trong góc A.

Dễ thấy:

\(\triangle AMN\sim \triangle ABC(g.g)\)\(\Rightarrow \frac{p_{AMN}}{p_{ABC}}=\frac{AM}{AB}\)

\(\triangle AMK\sim \triangle ABI(g.g)\)

\(\Rightarrow \frac{AM}{AB}=\frac{AK}{AI}\)

Mà \(LK\parallel IU \) nên theo Talet thì \(\frac{AK}{AI}=\frac{LK}{IU}=\frac{R_1}{R}\)

Do đó: \(\frac{p_{AMN}}{p_{ABC}}=\frac{R_1}{R}\)

Hoàn toàn tương tự ta có: \(\frac{p_{CPQ}}{p_{ABC}}=\frac{R_2}{R}; \frac{p_{BED}}{p_{ABC}}=\frac{R_3}{R}\). Do đó:

\(\frac{R_1+R_2+R_3}{R}=\frac{p_{AMN}+p_{CPQ}+p_{BED}}{p_{ABC}}=\frac{AM+AN+MN+BE+BD+ED+CP+CQ+PQ}{AB+AC+BC}\)

\(=\frac{(AM+AN+CP+CQ+BE+BD)+(MN+DE+PQ)}{(AM+AN+CP+CQ+BE+BD)+(ME+NP+DQ)}=1\)

(do \(MN+DE+PQ=ME+NP+DQ\) do tính chất các tiếp tuyến cắt nhau)

\(\Rightarrow R_1+R_2+R_3=R\) 

Ta có đpcm.

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ:

undefined