K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2016

Lời giải:

Ta đi CM BĐT phụ sau: \(\frac{x}{x^2+1}\leq \frac{18x}{25}+\frac{3}{50}\). \((\star)\)

\(\Leftrightarrow \) \((4x+3)(3x-1)^2\geq 0\) (đúng với mọi $x$ dương)

Do đó $(\star)$ luôn đúng. Thiết lập các BĐT tương tự với $y,z$ rồi cộng lại, ta thu được \(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\leq \frac{18}{25}+\frac{9}{50}=\frac{9}{10}\) (đpcm)

Dấu $=$ xảy ra khi $x=y=z=\frac{1}{3}$

26 tháng 12 2016

Ta thấy:

\(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)

Áp dụng BĐT AM-GM ta có:

\(P\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)

\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\)

Dấu "="xảy ra khi \(\left\{\begin{matrix}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{matrix}\right.\)\(\Rightarrow a=b=c=\frac{1}{3}\)

Vậy \(Min_P=9\) khi \(a=b=c=\frac{1}{3}\)

18 tháng 4 2016

Giả sử \(C\left(c;-c;-3\right)\in d_1\)

           \(D\left(5d+16;d\right)\in d_2\)

\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)

                                    \(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)

                                    \(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)

                                    \(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)

Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng

Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)

11 tháng 12 2016

vãi cả hình bình hàng

 

25 tháng 11 2016

Áp dụng bđt Cô si với 2 số dương là: \(\sqrt{\frac{b+c}{a}}\) và 1 ta có:

\(\left(\frac{b+c}{a}+1\right):2\ge\sqrt{\frac{b+c}{a}.1}\)

\(\Leftrightarrow\) \(\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\)

hay \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right)\)

Tương tự như trên ta cũng có:

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right)\)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right)\)

Từ (1); (2) và (3) \(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra khi \(\begin{cases}\sqrt{\frac{b+c}{a}}=1\\\sqrt{\frac{a+c}{b}}=1\\\sqrt{\frac{a+b}{c}}=1\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{b+c}{a}=1\\\frac{a+c}{b}=1\\\frac{a+b}{c}=1\end{cases}\)\(\Leftrightarrow\begin{cases}b+c=a\\a+c=b\\a+b=c\end{cases}\)

\(\Rightarrow2.\left(a+b+c\right)=a+b+c\)\(\Rightarrow a+b+c=0\), mâu thuẫn với đề bài a; b; c là các số dương

Như vậy dấu "=" không xảy ra

Do đó, \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\left(đpcm\right)\)

 

26 tháng 11 2016

lớp 10 á

31 tháng 10 2016

Chứng minh bằng quy nạp :

  • Với n = 2, đặt 2x = b+c-a > 0 , 2y = a-b+c > 0 , 2z = a+b-c > 0

Suy ra a = y+z , b = z+x , c = x+y

BĐT cần chứng minh trở thành \(xy^3+yz^3+zx^3-xyz\left(x+y+z\right)\ge0\)

\(\Leftrightarrow xyz\left[\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x+y+z\right)\right]\ge0\)(*)

Áp dụng BĐT Cauchy cho các số dương ta có :

\(y+\frac{x^2}{y}\ge2x\) ; \(x+\frac{z^2}{x}\ge2z\) ; \(z+\frac{y^2}{z}\ge2y\)

Từ đó suy ra \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge x+y+z\)

\(\Leftrightarrow\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x+y+z\right)\ge0\)

Từ đó BĐT (*) được chứng minh. Từ đó suy ra BĐT ban đầu được chứng minh.

  • Giả sử BĐT đúng với n , ta sẽ chứng minh BĐT cũng đúng với n+1. Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Theo giả thiết quy nạp ta có \(b^nc\left(b-c\right)\ge-a^nb\left(a-b\right)-c^na\left(c-a\right)\)

\(\Rightarrow b^{n+1}c\left(b-c\right)\ge-a^nb^2\left(a-b\right)-c^nab\left(c-a\right)\)

Do đó \(a^{n+1}b\left(a-b\right)+b^{n+1}c\left(b-c\right)+c^{n+1}a\left(c-a\right)\)

\(\ge a^{n+1}b\left(a-b\right)-a^nb^2\left(a-b\right)-c^nab\left(c-a\right)+c^{n+1}a\left(c-a\right)\)

\(=a^nb\left(a-b\right)^2+c^na\left(c-a\right)\left(c-b\right)\ge0\)

Vậy BĐT đúng với n + 1

Theo nguyên lí quy nạp BĐT đã cho đúng với mọi n > 1

Đẳng thức xảy ra khi a = b = c <=> Tam giác đã cho là tam giác đều.

 

 

8 tháng 10 2016

Lớp mấy vậy bạn

AH
Akai Haruma
Giáo viên
17 tháng 1 2017

Lời giải:

Cần chứng minh \(\frac{2a^3+1}{4b(a-b)}\geq 3\)

Áp dụng BĐT Am-Gm ngược dấu \(4b(a-b)\leq (b+a-b)^2=a^2\)

\(\Rightarrow \frac{2a^3+1}{4b(a-b)}\geq \frac{2a^3+1}{a^2}=2a+\frac{1}{a^2}=a+a+\frac{1}{a^2}\geq3\sqrt[3]{\frac{a^2}{a^2}}=3\)

Do đó ta có đpcm

Dấu $=$ xảy ra khi \(\left\{\begin{matrix} b=a-b\\ a=\frac{1}{a^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=\frac{1}{2}\end{matrix}\right.\)

22 tháng 9 2016

A B C c b a I

Ta có : \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=0\Leftrightarrow a.\overrightarrow{IA}+\left(b+c\right).\overrightarrow{IA'}=\overrightarrow{0}\) (Công thức thu gọn)

\(\Rightarrow I\in AA'\) và 

\(\frac{IA}{IA'}=\frac{b+c}{a}=\frac{c}{\frac{ac}{b+c}}=\frac{BA}{BA'}\)

Nhờ vào tính chất đường phân giác, dễ dàng thấy điểm I thuộc tia phân giác góc B, tức I là tâm của đường tròn ngoại tiếp tam giác ABC

=> Điều đó đúng với giả thiết.

Vậy ta có đpcm

23 tháng 9 2016

cảm ơn cảm ơn bạn nhiều lắm^^

 

19 tháng 9 2016

\(hpt\Leftrightarrow\begin{cases}y=\frac{60x^2}{36x^2+25}\\z=\frac{60y^2}{36y^2+25}\\x=\frac{60z^2}{36z^2+25}\end{cases}\)

Từ hệ suy ra x,y,z không âm. Nếu x=0 thì y=z=0 suy ra (0;0;0) là nghiệm của hệ phương trình.

Nếu x>0 thì y>0, z>0. Xét hàm số \(f\left(t\right)=\frac{60t^2}{36t^2+25},t>0\)

Ta có: \(f'\left(t\right)=\frac{3000t}{\left(36t^2+25\right)^2}>0\) với mọi t>0

Do đó \(f\left(t\right)\) đồng biến trên khoảng \(\left(0;+\infty\right)\)

Hệ pt đc viết lại \(\begin{cases}y=f\left(x\right)\\z=f\left(y\right)\\x=f\left(z\right)\end{cases}\)

Từ tính đồng biến của f(x) suy ra x=y=z. Thay vào hệ ta được

x(36x2-60x+25)=0. Chọn \(x=\frac{5}{6}\)

Vậy tập nghiệm của hệ pt là \(\left\{\left(0;0;0\right);\left(\frac{5}{6};\frac{5}{6};\frac{5}{6}\right)\right\}\)

19 tháng 9 2016

Khuyến khích cho sự "chơi trội" của you ^^ ahihi

7 tháng 9 2016

Áp dụng Bđt Cosi

\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)

Ta có:

\(\frac{2}{xy+yz+zx}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\ge\frac{2}{\frac{1}{3}}+\frac{8}{\left(x+y+z\right)^2}\ge14\) (Đpcm)

Dấu "=" khi \(x=y=z=\frac{1}{3}\)

7 tháng 9 2016

Hình như có 2 TH nhỉ?

20 tháng 8 2016

Chứng minh khá dài ấy :)

20 tháng 8 2016

Ta cần chứng minh : \(\frac{a_1+a_2+...+a_n}{n}\ge\sqrt[n]{a_1.a_2...a_n}\) với \(n\in N^{\text{*}}\)

Hiển nhiên bđt đúng với n = 2 , tức là \(\frac{a_1+a_2}{2}\ge\sqrt{a_1a_2}\) (1)

Giả sử bđt đúng với n = k , tức là \(\frac{a_1+a_2+...+a_k}{k}\ge\sqrt[k]{a_1.a_2...a_k}\) với \(k>2\)

Ta sẽ chứng minh bđt cũng đúng với mọi n = k + 1 

Không mất tính tổng quát, đặt \(a_1\le a_2\le...\le a_k\le a_{k+1}\)

thì : \(a_{k+1}\ge\frac{a_1+a_2+...+a_k}{k}\) . Lại đặt \(\frac{a_1+a_2+...+a_k}{k}=x,x\ge0\)

\(\Rightarrow a_{k+1}=x+y,y\ge0\) và \(x^k=a_1.a_2...a_k\) (suy ra từ giả thiết quy nạp)

Ta có : \(\left(\frac{a_1+a_2+...+a_{k+1}}{k+1}\right)^{k+1}=\left(\frac{kx+x+y}{k+1}\right)^{k+1}=\left(\frac{x\left(k+1\right)+y}{k+1}\right)^{k+1}=\left(x+\frac{y}{k+1}\right)^{k+1}\)

                                            \(\ge x^{k+1}+\left(k+1\right).\frac{y}{k+1}.x^k=x^{k+1}+y.x^k=x^k\left(x+y\right)\ge a_1.a_2...a_k.a_{k+1}\)

Suy ra \(\left(\frac{a_1+a_2+...+a_{k+1}}{k+1}\right)^{k+1}\ge\sqrt[k+1]{a_1.a_2...a_{k+1}}\)

Vậy bđt luôn đúng với mọi n > 2 (2)

Từ (1) và (2) suy ra đpcm.