K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a) Vì $M$ là trung điểm của $EF$ nên \(\overrightarrow {ME}+\overrightarrow{MF}=0\), tương tự \(\overrightarrow{NB}+\overrightarrow{NC}=0\)

Từ đkđb ta cũng có \(AE=\frac{1}{3}AB;AF=\frac{3}{5}AC\)

Ý 1:

\(\left\{\begin{matrix} \overrightarrow{AM}=\overrightarrow{AE}+\overrightarrow{EM}\\ \overrightarrow{AM}=\overrightarrow{AF}+\overrightarrow{FM}\end{matrix}\right. \)

\(\Rightarrow 2\overrightarrow{AM}=\overrightarrow{AE}+\overrightarrow{AF}-(\overrightarrow{ME}+\overrightarrow{MF})=\overrightarrow{AE}+\overrightarrow{AF}\)

\(=\frac{1}{3}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{AC}\)\(\Leftrightarrow \overrightarrow{AM}=\frac{1}{6}\overrightarrow{AB}+\frac{3}{10}\overrightarrow{AC}\)

Ý 2:

\(\left\{\begin{matrix} \overrightarrow{MN}=\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{BN}\\ \overrightarrow{MN}=\overrightarrow{MF}+\overrightarrow{FC}+\overrightarrow{CN}\end{matrix}\right.\Rightarrow 2\overrightarrow{MN}=(\overrightarrow{ME}+\overrightarrow{MF})+\overrightarrow{EB}+\overrightarrow{FC}-(\overrightarrow{NB}+\overrightarrow{NC})\)

\(\Leftrightarrow 2\overrightarrow{MN}=\overrightarrow{EB}+\overrightarrow{FC}=\frac{2}{3}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)

\(\Leftrightarrow \overrightarrow{MN}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}\)

b)

Theo đkđb ta có: \(\overrightarrow{BG}=3\overrightarrow{CG}\)

\(\left\{\begin{matrix} \overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\\ \overrightarrow{AG}=\overrightarrow{AC}+\overrightarrow{CG}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\\ 3\overrightarrow{AG}=3\overrightarrow{AC}+3\overrightarrow{CG}\end{matrix}\right.\)

\(\Rightarrow 2\overrightarrow{AG}=3\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow \overrightarrow{AG}=\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

Lại có:

\(\overrightarrow{EG}=\overrightarrow{EA}+\overrightarrow{AG}=\frac{-1}{3}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}=\frac{3}{2}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)

\(\overrightarrow{FG}=\overrightarrow{FA}+\overrightarrow{AG}=\frac{-3}{5}\overrightarrow{AC}+\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}=\frac{9}{10}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

c) Từ phần b ta thấy \(\frac{3}{5}\overrightarrow{EG}=\overrightarrow{FG}\Rightarrow E,G,F\) thẳng hàng.

AH
Akai Haruma
Giáo viên
27 tháng 8 2017

Lời giải:

a) Bạn vẽ hình ra cho dễ tưởng tượng nhé!

Để ý rằng: \(\left\{\begin{matrix} \overrightarrow{MA}=\overrightarrow{MO}+\overrightarrow {OA}\\ \overrightarrow{MB}=\overrightarrow{MO}+\overrightarrow {OB}\\ \overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow {OC}\\ \overrightarrow{MD}=\overrightarrow{MO}+\overrightarrow {OD}\end{matrix}\right.\)

\(\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\)

Vì $O$ là tâm của hình chữ nhật $ABCD$ nên :

\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\); \(\overrightarrow {OB}+\overrightarrow{OD}=\overrightarrow{0}\) (các cặp vector đối nhau)

Do đó, \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}\)

Suy ra \(\overrightarrow {MS}=4\overrightarrow {MO}\), kéo theo \(M,O,S\) thẳng hàng (theo thứ tự)

Do đó \(MS\) luôn quay quanh một điểm cố định là $O$

b)

Lấy điểm \(I\) thỏa mãn: \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=0\)

\(A,B,C,D\) cố định nên \(I\) cố định.

Ta có:

\(|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}+\overrightarrow{MI}+\overrightarrow{ID}|\)

\(=|4\overrightarrow{MI}|=a\Rightarrow \overrightarrow{MI}=\frac{a}{4}\)

Do đó tập hợp các điểm biểu diễn \(M\) là đường tròn tâm $I$ bán kính \(\frac{a}{4}\)

c) Ta có:

\(|\overrightarrow{NA}+\overrightarrow{NB}|=|\overrightarrow{NC}+\overrightarrow{ND}|\)

\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{NO}+\overrightarrow{OB}|=|\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{NO}+\overrightarrow{OD}|\)

\(\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow {OA}+\overrightarrow{OB}|=|2\overrightarrow{NO}+\overrightarrow{OC}+\overrightarrow{OD}|\) \((1)\)

Gọi \(I,K\) là trung điểm của \(AB,CD\) thì:

\(\left\{\begin{matrix} \overrightarrow{IA}+\overrightarrow{IB}=0\\ \overrightarrow {KC}+\overrightarrow{KD}=0\end{matrix}\right.\)

\((1)\Leftrightarrow |2\overrightarrow{NO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}|=|2\overrightarrow{NO}+\overrightarrow{OK}+\overrightarrow{KC}+\overrightarrow{OK}+\overrightarrow{KD}|\)

\(\Leftrightarrow |2\overrightarrow{NO}+2\overrightarrow{OI}|=|2\overrightarrow{NO}+2\overrightarrow{OK}|\)

\(\Leftrightarrow |\overrightarrow{NO}+\overrightarrow{OI}|=|\overrightarrow{NO}+\overrightarrow{OK}|\Leftrightarrow |\overrightarrow{NI}|=|\overrightarrow{NK}|\)

Do đó tập hợp điểm N nằm trên đường trung trực của \(IK\)

28 tháng 8 2017

cám ơn nhiều

26 tháng 8 2017

Đặt cái ban đầu là P

Ta có: \(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta lại có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta có:

\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

25 tháng 8 2017

batngothật vĩ đại Hung nguyen

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left (\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)(abc+abc+abc)\geq (ab+bc+ac)^2\)

\(\Leftrightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq \frac{(ab+bc+ac)^2}{3abc}\) $(1)$

Áp dụng BĐT Cauchy:

\(\left\{\begin{matrix} a^2b^2+b^2c^2\geq 2ab^2c\\ a^2b^2+c^2a^2\geq 2a^2bc\\ b^2c^2+c^2a^2\geq 2abc^2\end{matrix}\right.\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Leftrightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)

Từ \((1),(2)\Rightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq a+b+c\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

b) Ta có:

\(\text{VT}+3=(a+b+c)\left (\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Áp dụng BĐT Bunhiacopxky:

\(\left ( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \right )(a+b+b+c+c+a)\geq (1+1+1)^2=9\)

\(\Rightarrow \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)

\(\Rightarrow \text{VT}+3\geq (a+b+c).\frac{9}{2(a+b+c)}=\frac{9}{2}\Rightarrow \text{VT}\geq \frac{3}{2}\)

Do đó ta có đpcm.

13 tháng 8 2017

2) Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó, ta có: \(a^2+bc\le a^2+ac\le\left(a+c\right)^2\)

Vậy chỉ cần chứng minh

\(\left(a+b\right)^2\left(b+c\right)^2\ge4\left(b^2+ca\right)\left(c^2+ab\right)\)

Lợi dụng AM-GM ngay, ta được

\(4\left(b^2+ca\right)\left(c^2+ab\right)\le\left(b^2+ca+c^2+ab\right)^2=\left(b^2+ab+bc+ca+c^2-bc\right)^2=\left[\left(b+a\right)\left(b+c\right)+c\left(c-b\right)^2\right]\le\left(b+a\right)^2\left(b+c\right)^2\)

Đẳng thức xảy ra khi a=b;c=0 và hoán vị

13 tháng 8 2017

3) \(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Lợi dụng AM-GM, ta được

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}\ge2\left(a+b\right)\)

Tương tự với các BĐT tiếp theo

Cộng vế theo vế rồi rút gọn ta được đpcm

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 8 2017

Bữa trước ko để ý a,b,c ko âm với ngược dấu sai thê thảm =))

Dự đoán \(a=b=1\)\(c=0\) thì tính được \(2+\frac{1}{\sqrt2}\)

Ta sẽ chứng minh nó là GTNN.Thật vậy cần chứng minh

\(\sqrt{\dfrac{ab+bc+ca}{a^2+b^2}}+\sqrt{\dfrac{ab+bc+ca}{b^2+c^2}}+\sqrt{\dfrac{ab+bc+ca}{a^2+c^2}}\ge2+\dfrac{1}{\sqrt{2}}\)

Khôn mất tính tổng quá giả sử \(c=\min\{a,b,c\}\). Khi đó:

\(\dfrac{ab+ac+bc}{a^2+b^2}-\dfrac{(a+c)(b+c)}{(a+c)^2+(b+c)^2}=\dfrac{c(a+b+2c)(2ab+ac+bc)}{a^2+b^2)((a+c)^2+(b+c)^2}\ge0\)

Tương tự cũng có:

\(\dfrac{ab+ac+bc}{a^2+c^2}-\dfrac{b+c}{a+c}=\dfrac{c(2ab+ac-c^2)}{(a+c)(a^2+c^2)}\ge0\)

\(\dfrac{ab+ac+bc}{b^2+c^2}-\dfrac{a+c}{b+c}=\dfrac{c(2ab+bc-c^2)}{(b+c)(b^2+c^2)}\ge0\)

Đặt \(\dfrac{a+c}{b+c}=x^2;\dfrac{b+c}{a+c}=y^2\left(x,y>0\right)\)\(\Rightarrow xy=1\) và ta có:

\(x+y+\dfrac{1}{\sqrt{x^2+y^2}}\ge2+\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow x+y-2\sqrt{xy}\ge\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{x^2+y^2}}\)

\(\Leftrightarrow(\sqrt{x}-\sqrt{y})^2\ge\dfrac{(x-y)^2}{\sqrt{2(x^2+y^2)}(\sqrt{x^2+y^2}+\sqrt{2})}\)

\(\Leftrightarrow\sqrt{2(x^2+y^2)}(\sqrt{x^2+y^2}+\sqrt{2})\ge(\sqrt{x}+\sqrt{y})^2\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{2(x^2+y^2)}=\sqrt{(1^2+1^2)(x^2+y^2)}\ge x+y\)

\(=\dfrac{1}{2}(1^2+1^2)((\sqrt{x})^2+(\sqrt{y})^2)\ge\dfrac{1}{2}(\sqrt{x}+\sqrt{y})^2\)

Vậy cần chứng minh \(\sqrt{x^2+y^2}+\sqrt{2}\ge2\)

Đúng theo AM-GM:\(\sqrt{x^2+y^2}+\sqrt{2}\ge\sqrt{2xy}+\sqrt{2}=2\sqrt{2}>2\)

8 tháng 8 2017

Cho e góp ý tí nhá:

Từ bước

\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge\dfrac{\left(x-y\right)^2}{\sqrt{2\left(x^2+y^2\right)}\left(\sqrt{x^2+y^2}+\sqrt{2}\right)}\)

\(\Leftrightarrow\sqrt{2\left(x^2+y^2\right)}\left(\sqrt{x^2+y^2}+\sqrt{2}\right)\ge\left(\sqrt{x}+\sqrt{y}\right)^2\)

Thì bác chia 2 vế cho \(\left(\sqrt{x}-\sqrt{y}\right)^2\)đúng không. Nhưng mà ngoặc nỗi \(\left(\sqrt{x}-\sqrt{y}\right)^2\)nó lại là 0 vì thế nên không thể chia cho nó được.

29 tháng 7 2017

It's really.. can be solved ?

4 tháng 8 2017

Bác kiếm bài này ở đâu thế.

7 tháng 7 2017

Đặt \(D=\dfrac{\text{x}^2+a}{xy+a}\)

\(E=\dfrac{y^2+b}{yz+b}\)

\(F=\dfrac{z^2+c}{xz+c}\)

Dự đoán: Đẳng thức xảy ra khi: D=E=F=1

Áp dụng bđt AM_GM :

||bđt có được dùng ngược lại giống như đl Ta-let/ Py-ta-go ko??||

\(\dfrac{x^2+a}{yz+b}\cdot\dfrac{y^2+b}{xz+c}\cdot\dfrac{z^2+c}{xy+a}\ge1\)

\(\Leftrightarrow\dfrac{\text{x}^2+a}{xy+a}\cdot\dfrac{y^2+b}{yz+b}\cdot\dfrac{z^2+c}{xz+c}\ge1\) (*)

*Nhận xét: Giá trị của VT phụ thuộc vào x,y,z .

Trong 3 số x,y,z có ít nhất 1 số >/ các số còn lại => trong 3 đa thức D, E, F có ít nhất 1 đa thức >/ 1 với mọi x,y,z,a,b,c dương

\(\Rightarrow\) (*) đúng

Hay \(\dfrac{x^2+a}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\) \(\forall x,y,z,a,b,c>0\)

Dấu "=" xảy ra khi D=E=F=1 , hay x=y=z

|| kết luận viết như nào đây........||

----------------------

Không biết có đúng không nữa, sai sót gì sư phụ góp ý cho con nhá..... nhớ góp ý nhẹ nhẹ thôi không là broken heart T_T!! Cảm ơn ạ

9 tháng 7 2017

Áp dụng BĐT AM-GM:

\(\sum\dfrac{x^2+a}{yz+b}\ge\sum\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}\)

Đặt \(x^2+y^2+y^2+a+b+c=m\)(m>0)

Áp dụng BĐT chebyshev:

\(\left[\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}+\dfrac{2\left(y^2+b\right)}{x^2+z^2+2c}+\dfrac{2\left(z^2+c\right)}{x^2+y^2+2a}\right]\left[\left(y^2+z^2+2b\right)+\left(x^2+z^2+2c\right)+\left(x^2+y^2+2a\right)\right]\ge6\left(x^2+y^2+z^2+a+b+c\right)\)

hay \(VT.2m\ge6m\Leftrightarrow VT\ge3\)

Điều này đúng khi ta có thứ tự sắp biến sau:

\(\left\{{}\begin{matrix}\dfrac{x^2+a}{y^2+z^2+2b}\ge\dfrac{y^2+b}{x^2+z^2+2c}\ge\dfrac{z^2+c}{x^2+y^2+2a}\\y^2+z^2+2b\le x^2+z^2+2c\le x^2+y^2+2a\end{matrix}\right.\)

Thật vậy, giả sử \(x\ge y\ge z\)\(a=max\left\{a,b,c\right\}\) thì điều trên đúng

P/s : dòng cuối em chém đó, sir giải quyết nốt đi,mắc khúc cuối :v

22 tháng 6 2017

Áp dụng BĐT cauchy:

\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)

\(M\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+xz\right)}+\dfrac{7}{xy+yz+zx}\)Áp dụng BĐT cauchy-schwarz:

\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

\(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)

11 tháng 8 2018

cô si cho đễ hiểu đi bn , cần gì phải cauchy s,. làm gì cho mệt

21 tháng 6 2017

a + 5 = 7c => 5 = 7c - a

Thay vào a3 + 5a2 + 21 = 7b ta được:

a3 + (7c - a).a2 + 21 = 7b

=> a3 + 7c.a2 - a3 + 21 = 7b

=> 7c.a2 + 21 = 7b

=> 7b - 7c.a2 = 21 (1)

=> 7c.(7b-c - a2) = 21 (*)

Từ (1) => 7b > 7c.a2 => b > c => 7b-c nguyên mà a2 nguyên nên 7b-c - a2 nguyên

Kết hợp với (*) => 21 chia hết cho 7c

\(7^c\ge7\) do c nguyên dương nên 7c = 7 => c = 1

Thay vào a + 5 = 7c ta được: a + 5 = 71 => a = 2

Thay c = 1; a = 2 vào (*) ta được: 71.(7b-1 - 22) = 21

=> 7b-1 - 4 = 3

=> 7b-1 = 7 => b - 1 = 1 => b = 2

Vậy a = b = 2; c = 1

21 tháng 6 2017

tú đâu rồi vào tick cho sư phụ you kìa :)))))))