K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Áp dụng Bất đẳng thức AM-GM cho 4 số dương :

\(\Rightarrow2x+xy+z+yzt\ge4\sqrt[4]{2x^2y^2z^2t}\)

\(\Rightarrow1\ge4\sqrt[4]{2x^2y^2z^2t}\Rightarrow1\ge512.x^2y^2z^2t\Rightarrow x^2y^2z^2t\le\dfrac{1}{512}\)

=> MaxI=\(\dfrac{1}{152}\) khi \(\left\{{}\begin{matrix}x=\dfrac{1}{8}\\y=2\\z=\dfrac{1}{4}\\t=\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 11 2017

Hà Nam Phan Đình cho tớ hỏi BĐT AM-GM là BĐT gì vậy? và lớp mấy được hok vậy ạ?

22 tháng 7 2021

31(xyzt+xy+xt+zt+1)=40(yzt+y+t)31(xyzt+xy+xt+zt+1)=40(yzt+y+t)

⇒xyzt+xy+xt+zt+1yzt+y+t=4031⇒xyzt+xy+xt+zt+1yzt+y+t=4031

⇒x(yzt+y+t)+zt+1yzt+y+t=4031⇒x(yzt+y+t)+zt+1yzt+y+t=4031

⇒x+zt+1yzt+y+t=4031⇒x+zt+1yzt+y+t=4031

⇒x+1(yzt+y+tzt+1)=4031⇒x+1(yzt+y+tzt+1)=4031

⇒x+1(y+tzt+1)=4031⇒x+1(y+tzt+1)=4031

⇒x+1y+1(zt+1t)=4031⇒x+1y+1(zt+1t)=4031

⇒x+1y+1z+1t=4031⇒x+1y+1z+1t=4031

4031<6231=2⇒x<24031<6231=2⇒x<2

Với x = 0; có :

1y+1z+1t=40311y+1z+1t=4031

⇒y+1z+1t=3140⇒y+1z+1t=3140

Mà 3140<1⇒y<1⇒y=03140<1⇒y<1⇒y=0

⇒1z+1t=3140⇒1z+1t=3140

⇒z+1t=4031⇒z+1t=4031

⋅z=0⇒t=3140∉Z⋅z=0⇒t=3140∉Z(Loại )

⋅z=1⇒t=319∉Z⋅z=1⇒t=319∉Z(Loại )

Với x=1;x=1;ta có :

1y+1z+1t=4031−11y+1z+1t=4031−1

⇒1y+1z+1t=931⇒1y+1z+1t=931

⇒y+1z+1t=319⇒y+1z+1t=319

319<369=4⇒y<4319<369=4⇒y<4

⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z(Loại)

⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z(Loại)

⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z(Loại )

⋅y=3⇒z+1t=94⋅y=3⇒z+1t=94

94<3⇒z<394<3⇒z<3

z=0⇒t=49∉Zz=0⇒t=49∉Zz=1⇒t=45∉Zz=1⇒t=45∉Zz=2⇒t=4z=2⇒t=4( Thỏa mãn )

Vậy x=1;y=3;z=2;t=4.

NV
16 tháng 2 2020

Bài này x;y;z phải dương chứ nhỉ? Có dấu "=" ở số 0 thế kia thì bối rối quá

Dự đoán dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn tồn tại 2 số nằm cùng phía so với \(\frac{1}{2}\) ; giả sử đó là x và y

\(\Rightarrow\left(x-\frac{1}{2}\right)\left(y-\frac{1}{2}\right)\ge0\Leftrightarrow\frac{1}{2}\left(x+y\right)-xy\le\frac{1}{4}\)

\(\Leftrightarrow x+y-2xy\le\frac{1}{2}\)

Mặt khác:

\(1=2xyz+x^2+y^2+z^2\ge2xyz+2xy+z^2=2xy\left(1+z\right)+z^2\)

\(\Rightarrow1-z^2\ge2xy\left(1+z\right)\Leftrightarrow\left(1-z\right)\left(1+z\right)\ge2xy\left(1+z\right)\)

\(\Leftrightarrow1-z\ge2xy\Rightarrow xy\le\frac{1-z}{2}\)

\(\Rightarrow P=xy+z\left(x+y-2xy\right)\le\frac{1-z}{2}+\frac{z}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

14 tháng 5 2019

Ta có: \(x+y+z=1\Rightarrow\hept{\begin{cases}\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\\\sqrt{y+xz}=\sqrt{y\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(y+z\right)}\\\sqrt{z+xy}=\sqrt{z\left(x+y+z\right)+xy}=\sqrt{\left(x+z\right)\left(y+z\right)}\end{cases}}\)

Ta viết lại A

\(A=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(y+z\right)\left(x+z\right)}\)

Áp dụng bđt AM-GM:

\(A\le\frac{x+y+x+z+x+y+y+z+y+z+x+z}{2}=2\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)

14 tháng 5 2019

\(x+yz=x\left(x+y+z\right)+yz\)

\(=x^2+xy+xz+yz\)

\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)

+ Tương tự : \(y+xz=\left(x+y\right)\left(y+z\right)\)

\(z+xy=\left(x+z\right)\left(y+z\right)\)

+ Theo bđt AM-GM : \(\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{x+y+x+z}{2}\)

\(\Rightarrow\sqrt{\left(x-1\right)\left(y-1\right)}\le\frac{2x+y+z}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+y=x+z\Leftrightarrow y=z\)

+ Tương tự ta cm đc : 

\(\sqrt{\left(x+y\right)\left(y+z\right)}\le\frac{x+2y+z}{2}\).   Dấu "=" xảy ra \(\Leftrightarrow x=z\)

\(\sqrt{\left(x+z\right)\left(y+z\right)}\le\frac{x+y+2z}{2}\).   Dấu "=" xảy ra \(\Leftrightarrow x=y\)

Do đó : \(A\le\frac{4\left(x+y+z\right)}{2}=2\)

A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy Max A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)

3 tháng 12 2021

\(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\ge0\\ \Leftrightarrow1-x\ge0\Leftrightarrow0< x\le1\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)+\left(y+z\right)^2\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)\le\left(y+z\right)^2\left(1-x-1\right)=-x\left(y+z\right)^2\\ \Leftrightarrow x-2\left(y+z\right)\le-\left(y+z\right)^2\\ \Leftrightarrow x\le\left(y+z\right)\left[2-\left(y+z\right)\right]\)

Đặt \(2-\left(y+z\right)=t\)

\(P=x\left(1-y\right)\left(1-z\right)\le x\left(\dfrac{1-y+1-z}{2}\right)^2=\dfrac{x\left[2-\left(y+z\right)\right]^2}{4}\\ \Leftrightarrow4P\le x\left[2-\left(y+z\right)\right]^2\le\left(y+z\right)\left[2-\left(y+z\right)\right]^3\\ \Leftrightarrow4P\le t^3\left(2-t\right)=\dfrac{27}{16}-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\)

Mà \(-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\le0\Leftrightarrow4P\le\dfrac{27}{16}\Leftrightarrow P\le\dfrac{27}{64}\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{4};y=z=\dfrac{1}{4}\)

NV
5 tháng 11 2019

Đặt \(\left(x+1;y+1;z+4\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\a+b+c=6\end{matrix}\right.\)

\(A=\frac{\left(a-1\right)\left(b-1\right)-1}{ab}+\frac{c-4}{c}=\frac{ab-a-b}{ab}+\frac{c-4}{c}\)

\(A=2-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le2-\frac{\left(1+1+2\right)^2}{a+b+c}=2-\frac{16}{6}=-\frac{2}{3}\)

\(A_{max}=-\frac{2}{3}\) khi \(\left(a;b;c\right)=\left(\frac{3}{2};\frac{3}{2};3\right)\) hay \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)