K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Đặt a+1=x;  b+1=y;  c+1=z; đề bài trở thành ''Cho x,y,z\(\in\left(0;3\right)\)thỏa mãn x+y+z=3 cm \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\le6\)''

Bất đẳng thức cần chứng minh tương đương : \(x^2+y^2+z^2-2\left(x+y+z\right)+3\le6\)\(\Leftrightarrow x^2+y^2+z^2\le3+2\left(x+y+z\right)=9\)(1)    mà \(x+y+z=3\Rightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)vậy (1)\(\Leftrightarrow9-2\left(xy+yz+xz\right)\le9\Leftrightarrow-2\left(xy+yz+xz\right)\le0\)(2)   mà x,y,z thuộc (0;3) => (2) đúng mà các phép biến đổi trên là tương đương nên ta suy ra đpcm 

27 tháng 5 2015

Do a thuộc đoạn [-1;2 ] nên a+1>=0 ; a-2<=0  

Do đó (a+1)(a-2)<=0  hay  a^2-a<=2

Tương tự     b^2-b<=2; c^2-c<=2

Cộng theo vế: a^2+b^2+c^2-(a+b+c)<=6

a^2+b^2+c^2<=6  (do a+b+c=0)

 

 

27 tháng 5 2015

$(a+1)(a-2)<=0$

$a^2-a<=2$

$b^2-b<=2$; $c^2-c<=2$

$a^2+b^2+c^2-(a+b+c)<=6$

$a^2+b^2+c^2<=6$

 

27 tháng 5 2020

Đặt \(p=a+b+c;q=ab+bc+ca;r=abc\)

Khi đó p = 1 và bất đẳng thức cần chứng minh trở thành: \(5\left(p^2-2q\right)\le6\left(p^3-3pq+3r\right)+1\)

hay \(5-10q\le6\left(1-3q+3r\right)+1\Leftrightarrow18r-8q+2\ge0\)(*). Đúng theo BĐT Schur với p = 1 vì: 

(*)\(\Leftrightarrow9r-4q+1\ge0\Leftrightarrow p^3+9r\ge4pq\)

Vậy ta có điều phải chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

-1<=a,b,c<= 2

=> đồng thời

(a+1)(a-2) <=0  

(b+1)(b-2) <=0

(c+1)(c-2) <=0

Cộng lại ta có

+> a^2+b^2+c^2-(a+b+c)-6 <=0

=> a^2+b^2+c^2 <=6

19 tháng 10 2017

Biến đổi VT=\(3\left(ab+bc+ca\right)-abc\left(a+b+c\right)=3\left(ab+bc+ca\right)-\frac{\left(ab+bc+ca\right)^2-a^2b^2-b^2c^2-c^2a^2}{2}\)

\(\le3t-\frac{t^2}{2}+\frac{3}{2}=\frac{12-\left(t-3\right)^2}{2}\le6\)(t=ab+bc+ca)

(a^2b^2+b^2c^2+c^2a^2 nhỏ hơn hoặc bằng 3)

25 tháng 11 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow xyz=1\)

Không khó để chứng minh \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z\)

\(VT=\Sigma\frac{y^2z}{x^2\left(1+2z\right)}=\Sigma\frac{\left(\frac{y^2}{x^2}\right)}{\frac{1+2z}{z}}\ge\frac{\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+6}\)

\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+6}\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+6}\)

Đặt \(t=x+y+z\ge3\sqrt[3]{xyz}=3\).Cần chứng minh:

\(f\left(t\right)=\frac{t^2}{\frac{t^2}{3}+6}\ge1\Leftrightarrow\frac{2}{3}\left(t-3\right)\left(t+3\right)\ge0\)(đúng)

IS that true?

25 tháng 11 2019

Làm xong em mới nhận ra không cần đổi biến:D

Ta có:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3a\)

Tương tự: \(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3b;\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3c\)

Cộng theo vế 3 BĐT trên suy ra \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)

Trở lại bài toán: \(VT=\Sigma_{cyc}\frac{\left(\frac{a^2}{b^2}\right)}{c+2}\ge\frac{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=\frac{t^2}{t+6}\)(với \(t=a+b+c\ge3\sqrt[3]{abc}=3\))

Cần chúng minh: \(\frac{t^2}{t+6}\ge1\Leftrightarrow t^2-t-6\ge0\Leftrightarrow\left(t-3\right)\left(t+2\right)\ge0\)(đúng)

2 tháng 5 2017

\(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-c\right)}\)

sau đó chứng minh tương tự và cộng theo từng vế thôi 

15 tháng 9 2021

\(a+b+c=3\\ \Leftrightarrow a\left(b+c+2\right)=ab+ac+a+b+c+1=\left(a+1\right)\left(b+c+1\right)\)

Tương tự:

\(b\left(c+a+2\right)=\left(b+1\right)\left(a+c+1\right)\\ c\left(a+b+2\right)=\left(c+1\right)\left(a+b+1\right)\)

Áp dụng BĐT cosi:

\(\left\{{}\begin{matrix}\left(a+1\right)\left(b+c+1\right)\le\dfrac{\left(a+1+b+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(b+1\right)\left(a+c+1\right)\le\dfrac{\left(b+1+a+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(c+1\right)\left(a+b+1\right)\le\dfrac{\left(c+1+a+b+1\right)^2}{2}=\dfrac{2^2}{2}=2\end{matrix}\right.\)

Cộng vế theo vế 2 BĐT trên:

\(\Leftrightarrow\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le2+2+2=6\)

Dấu \("="\Leftrightarrow a=b=c=1\)

 

 

15 tháng 9 2021

anh oi, tại sao chỗ a(b + c + 2) = ab + ac + a + b + c + 1 được ạ? :<