K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{a+c}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\) cộng lại ta được

=>\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>1\)

+\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\) cộng lại

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)

10 tháng 10 2018

cho mk hỏi vì sao a/b+c < a+a/a+b+c zậy

AH
Akai Haruma
Giáo viên
5 tháng 5 2018

Lời giải:

Ta có:

\(\frac{a}{b+c}=\frac{2a}{2(b+c)}=\frac{2a}{(b+c)+(b+c)}< \frac{2a}{a+b+c}\) (do mỗi số nhỏ hơn tổng hai số kia thì \(a< b+c\))

Hoàn toàn tương tự:

\(\left\{\begin{matrix} \frac{b}{c+a}< \frac{2b}{a+b+c}\\ \frac{c}{a+b}< \frac{2c}{a+b+c}\end{matrix}\right.\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

15 tháng 1 2019

Mình đang cần gấp nên các bạn giúp mình với

20 tháng 3 2022

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

13 tháng 2 2020

Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

29 tháng 2 2020

Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)

\(\implies\) \(a+b+c+d\) chia hết cho \(2\)

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số\(\left(đpcm\right)\)

10 tháng 7 2015

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1