K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

tham khảo thui nhé, chưa tìm đc lời giải phù hợp :'< 

+) Với 3 số a,b,c đều lớn nhất ( a=b=c ) 

\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a=H\) (1) 

+) Không mất tính tổng quát, với a và b là số lớn nhất ( a=b>c ) 

\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{2}{a}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (2) 

+) Không mất tính tổng quát, với a là số lớn nhất ( a>b, a>c ) 

\(\Rightarrow\)\(H=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}< \frac{3}{\frac{3}{a}}=a\)\(\Rightarrow\)\(a>H\) (3) 

(1), (2) và (3) \(\Rightarrow\)\(a\ge H\) với a là số lớn nhất hoặc 1 trong các số lớn nhất ( tương tự với b và c ) 

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

NV
30 tháng 6 2020

Với mọi x;y dương, ta luôn có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow P\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(P\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(P\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

\(P_{max}=1\) khi \(a=b=c=1\)

10 tháng 1 2020

\(\Sigma\frac{a}{1+a}=\Sigma\frac{1}{16}a\left(\frac{16}{a+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}\right)\le\Sigma\frac{1}{16}a\left(\frac{1}{a}+9\right)=\frac{3}{4}\)

25 tháng 5 2020

lolang đúng ko z

AH
Akai Haruma
Giáo viên
5 tháng 2 2017

Lời giải:

\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)

Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:

\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$