K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Áp dụng BĐT c-s dạng engel

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

20 tháng 2 2018

Cô si: \(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế: 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)

"=" khi a=b=c

22 tháng 2 2018

tao khong biet

20 tháng 5 2018

\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)

Áp dụng \(\left(x+y\right)^2\ge4xy\)

18 tháng 5 2018

1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc

29 tháng 3 2016

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

14 tháng 3 2016

Vì  \(n^2-n=n\left(n-1\right)\)  luôn là số chẵn với mọi  số nguyên  \(n\)

nên do đó,  \(a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\)  là số chẵn  \(\left(1\right)\)

Mà  \(a^2+b^2=c^2+d^2\)  (theo giả thiết)

nên  \(a^2+b^2+c^2+d^2=2\left(a^2+b^2\right)\)  là một số chẵn \(\left(2\right)\) (do tích trên chia hết cho  \(2\))  

\(\left(1\right)\)  và  \(\left(2\right)\)  suy ra  \(a+b+c+d\)  là một số chẵn

Vậy,   \(a+b+c+d\)  luôn là hợp số với  \(a,b,c,d\in Z^+\)

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

16 tháng 3 2020

1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương 

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

29 tháng 1 2020

BĐT phụ:\(\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(m+p\right)^2}{n+q}\) với n,p dương;m,p thực bất kỳ

Áp dụng:

\(RHS\ge\frac{\left(1+1+2+4\right)^2}{x+y+z+t}=\frac{64}{1}=64\)