K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)

Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Coi pt trên là pt bậc 2 ẩn x

Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)

           \(=-49y^2+98y-49\)

           \(=-49\left(y-1\right)^2\)

pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                      \(\Leftrightarrow-49\left(y-1\right)^2\ge0\)

                      \(\Leftrightarrow y=1\)

Thế vào pt (2) được x = 2

           

3 tháng 2 2019

\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)

\(\Rightarrow xy+yz+zx=1\)

Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được

\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được

\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)

                        \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

                        \(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)

                       \(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)

                       \(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

29 tháng 1 2019

Xét pt \(x^2+xy+y^2-y=0\)    (1)

Coi pt trên là pt bậc 2 ẩn x , tham số y

\(\Delta_x=y^2-4y^2+4y\)

     \(=-3y^2+4y\)

Pt có nghiệm \(\Leftrightarrow\Delta_x\ge0\)

                   \(\Leftrightarrow-3y^2+4y\ge0\)

                   \(\Leftrightarrow0\le y\le\frac{4}{3}\)

                    \(\Rightarrow y^2\le\frac{16}{9}\)

Pt (1) được viết lại dưới dạng \(y^2+y\left(x-1\right)+x^2=0\)

Coi pt trên là pt bậc 2 ẩn y, tham số x

Có \(\Delta_y=\left(x-1\right)^2-4x^2\)

          \(=x^2-2x+1-4x^2\)

          \(=-3x^2-2x+1\)

Pt có nghiệm khi \(\Delta_y\ge0\)

                      \(\Leftrightarrow-3x^2-2x+1\ge0\)

                       \(\Leftrightarrow-1\le x\le\frac{1}{3}\)

                       \(\Rightarrow x^3\le\frac{1}{27}\)

Khi đó \(x^3+y^2\le\frac{1}{27}+\frac{16}{9}=\frac{49}{27}< 2\)

=> Hpt vô nghiệm

28 tháng 1 2019

\(2018\left(a+b\right)=ab\)

Tpcm: \(\sqrt{a+b}=\sqrt{a-2018}-\sqrt{b-2018}\)

\(\Leftrightarrow2018=-\sqrt{ab-2018\left(a+b\right)+2018^2}\)với a>b

\(\Rightarrow2018=-2018\)(vô lý) 

=> Đề bì có vấn đề? 

28 tháng 1 2019

Bạn vào câu hỏi tương tự ý , có 1 bạn tên giống hệt bạn từng trả lời rồi đấy !

28 tháng 1 2019

Bạn tham khảo nha ! Lick : https://olm.vn/hoi-dap/detail/185482794083.html

Câu hỏi của Kudo - Toán lớp 9 - Học toán với OnlineMath

Chúc bạn học tốt !

28 tháng 1 2019

sao nói tui lạnh

28 tháng 1 2019

sao nói tôi lạnh

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

28 tháng 1 2019

áp dụng bdt cô-si ta có P\(\ge\)2

dấu = xảy ra khi (a+b)2=ab 

28 tháng 1 2019

\(\text{Giải}\)

\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

Ấp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

\(P=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{a+b}{\sqrt{ab}}.\frac{3}{4}\)

\(\text{ÁP DỤNG BĐT Cô-si Ta đc:}\)\(\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\ge2\sqrt{\frac{\left(a+b\right)\left(\sqrt{ab}\right)}{4\sqrt{ab}\left(a+b\right)}}=1\)

Theo BĐT Cô si ta đc:\(\frac{3}{4}.\frac{a+b}{\sqrt{ab}}\ge\frac{3}{4}.2=\frac{3}{2}\)

\(\Rightarrow P_{min}=\frac{3}{2}.\text{Dấu "=" xảy ra khi: a=b}\)

28 tháng 1 2019

Số bé: 28

Số lớn: 40 nha

T.i.c.k nhoa 

28 tháng 1 2019

làm rõ ra hộ mình đc k ạ ?