(0,5 điểm)
Giải phương trình: \(5 \sqrt{x^5+x^3+x^2+1}=2 \sqrt{x^6+5 x^4+8 x^2+4}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+y-xy=0\left(1\right)\\\dfrac{2y-xy}{3-2x}=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y-xy=-x\\y-xy=3-2x-y\end{matrix}\right.\)
\(\Rightarrow x=3-y\)
Thay vào (1)
\(\Rightarrow\left(3-y\right)+y-\left(3-y\right)y=0\)
\(\Leftrightarrow y^2-3y+3=0\)
Đến đây dùng delta tìm y, xong thay y vào chỗ x=3-y để tìm x
a) \(\Delta=\left(-1\right)^2-4.\left(-6\right).1=25\) > 0
Khi đó : Phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{1+\sqrt{25}}{2}=3;x_2=\dfrac{1-\sqrt{25}}{2}=-2\)
Tập nghiệm \(S=\left\{3;-2\right\}\)
b) (*) m = 0 tìm được x = 0 (loại)
(*) \(m\ne0\) ta có \(\Delta=\left[-2\left(m-1\right)\right]^2-4m^2=-8m+4\)
Phương trình có 2 nghiệm phân biệt khi
-8m + 4 > 0
<=> \(m< \dfrac{1}{2}\)
Ta có: \(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{3ab}{2}\)
\(\Rightarrow\)\(\text{Σ}\dfrac{a}{1+9b^2}\ge a+b+c-\dfrac{3\left(ab+bc+ca\right)}{2}\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2}=\dfrac{1}{2}\)
(Áp dụng BĐT Cô Si cho 2 số dương, ta có:
\(\text{ }ab+bc+ca\le a^2+b^2+c^2\Rightarrow3\left(\text{ }ab+bc+ca\right)\le\left(a+b+c\right)^2\))
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Gọi số máy tổ I và tổ II sản xuất được lần lượt là \(a,b\left(a,b\inℕ^∗;a,b< 860\right)\)ta có:
\(\left\{{}\begin{matrix}a+b=860\\\left(a+15\%a\right)+\left(b+10\%b\right)=964\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\\left(a+b\right)+\left(15\%a+10\%b\right)=964\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\860+\left(15\%a+10\%b\right)=964\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\15\%a+10\%b=104\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\10\%a+5\%a+10\%b=104\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\10\%\left(a+b\right)+5\%a=104\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\10\%\cdot860+10\%b=104\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\86+10\%b=104\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\10\%b=18\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=860\\b=180\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=180\\a=a+b-b=860-180\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=180\\a=680\end{matrix}\right.\)
Vậy tổ 1 sản xuất được 680 máy trong tháng đầu, tổ 2 sản xuất được 180 máy trong tháng đầu.
Phương trình hoành độ giao điểm
x2 = -x + 2
<=> x2 + x - 2 = 0
Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm \(x_1=1;x_2=-2\)
Với x1 = 1 => y1 = 1 => A(1,1)
Với x2 = -2 => y2 = 4 => B(-2 , 4)
Ta có BO = \(\sqrt{\left(-2\right)^2+4^2}=\sqrt{20}\);
\(OA=\sqrt{1^2+1^2}=\sqrt{2}\)
AB = \(\sqrt{3^2+3^2}=\sqrt{18}\)
Từ đó dễ thấy OA2 + AB2 = BO2
=> Tam giác AOB vuông tại A
nên SAOB = \(\dfrac{\sqrt{18}.\sqrt{2}}{2}=3\)
x2 = -x + 2
<=> x2 + x - 2 = 0
Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm
Với x1 = 1 => y1 = 1 => A(1,1)
Với x2 = -2 => y2 = 4 => B(-2 , 4)
Ta có BO = ;
AB =
Từ đó dễ thấy OA2 + AB2 = BO2
=> Tam giác AOB vuông tại A
nên SAOB =
\(5\sqrt{x^5+x^3+x^2+1}=2\sqrt{x^6+5x^4+8x^2+4}\) \(\left(x\ge-1\right)\)
\(5\sqrt{\left(x^3+1\right)\left(x^2+1\right)}=2\sqrt{\left(x^4+4x^2+4\right)\left(x^2+1\right)}\)
\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\) \(\left\{{}\begin{matrix}x^2+1>0\\x^2+2>0\end{matrix}\right.\)
\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x+1+x^2-x+1\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)
\(pt\Leftrightarrow2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\)
Đến thay a,b vào bình phương xong dùng delta thoi :)