giải phương trình :
\(\sqrt[3]{x^2}-3\sqrt[3]{x}=20\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\hept{\begin{cases}\frac{5}{x}=\frac{3}{y}\\\frac{6}{y}=\frac{2}{z}\end{cases}}\Rightarrow\hept{\begin{cases}3x=5y\\2y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=5y\\y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{y}{3}=\frac{x}{5}\\\frac{y}{3}=\frac{z}{1}\end{cases}}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{1}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{1}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=k\end{cases}}\)
Khi đó 3x2 + 5y2 - 2z2 = 472
<=> 3(5k)2 + 5(3k)2 - 2k2 = 472
=> 75k2 + 45k2 - 2k2 = 472
=> 118k2 = 472
=> k2 = 4
=> k = \(\pm\)2
Khi k = 2 => x = 10 ; y = 6 ; z = 2
Khi k = -2 => x = -10 ; y = -6 ; z = -2
Vậy các cặp (x;y;z) thỏa mãn bài toán là (10;6;2) ; (-10;-6;-2)
Từ \(\frac{x}{y}=\frac{2}{3}\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{z}=\frac{4}{5}\)\(\Rightarrow\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)(1) \(\Rightarrow\left(\frac{x}{8}\right)^2=\left(\frac{y}{12}\right)^2=\left(\frac{z}{15}\right)^2=\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
\(=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Rightarrow x^2=4.64=256\)\(\Rightarrow x=\pm18\)
\(y=4.144=576\)\(\Rightarrow y=\pm24\)
\(z^2=4.225=900\)\(\Rightarrow z=\pm30\)
Từ (1) \(\Rightarrow\)x, y, z có cùng dấu
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn đề bài là: \(\left(-18;-24;-30\right)\); \(\left(18;24;30\right)\)
\(\frac{x}{y}=\frac{2}{3};\frac{y}{z}=\frac{4}{5}\) và \(x^2-y^2=-320\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x^2}{8^2}=\frac{y^2}{12^2}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{x^2-y^2}{64-144}=\frac{-320}{-80}=4\)
\(\Leftrightarrow x^2=4.64=256\Leftrightarrow x=16hoacx=-16\)
\(\Leftrightarrow y^2=4.144=576\Leftrightarrow x=24hoacx=-24\)
\(\Leftrightarrow\frac{z}{15}=4\Leftrightarrow z=4.15=60\)
Chúc bạn học tốt
Bài làm :
Ta có :
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3a-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có :
\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
=> Điều phải chứng minh
\(\text{Giả sử : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
Từ (1) và (2)
\(\Rightarrow\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
=> Điều phải chứng minh
\(A=\frac{1}{5}+\left|x+0,35\right|\ge\frac{1}{5}\)
\(\Leftrightarrow A=\left|x+0,35\right|\ge0\)
Dấu "=" xảy ra khi x=-0,35
Vậy A =0 thì nhỏ nhất với x=-0,35
Chúc bạn học tốt