K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

                                                            Bài giải

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}=\frac{x-y+z}{\frac{3}{2}-\frac{4}{3}+\frac{6}{5}}=\frac{41}{\frac{41}{30}}=41\cdot\frac{30}{41}=30\)

\(\Rightarrow\hept{\begin{cases}x=30\cdot3\text{ : }2=45\\y=30\cdot4\text{ : }3=40\\z=30\cdot6\text{ : }5=36\end{cases}}\)

Vậy x = 45 ; y = 40 ; z = 36

13 tháng 8 2020

Theo bài ra ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}=\frac{x-y+z}{\frac{3}{2}-\frac{4}{3}+\frac{6}{5}}=\frac{41}{\frac{41}{30}}=30\)

\(\frac{x}{\frac{3}{2}}=30\Leftrightarrow x=45\)

\(\frac{y}{\frac{4}{3}}=30\Leftrightarrow y=40\)

\(\frac{z}{\frac{6}{5}}=30\Leftrightarrow x=36\)

13 tháng 8 2020

100+2x+3x+x/2-56=66
<=> 2x+3x+x/2=66+56-100
<=> 5x+x/2= 22
<=> 5x+0,5x=22
<=>5,5x=22
<=>x= 4

13 tháng 8 2020

\(100+2x+\frac{3x+x}{2}-56=66\)

\(\Leftrightarrow\frac{200}{2}+\frac{4x}{2}+\frac{3x+x}{2}-\frac{112}{2}=\frac{132}{2}\)

\(\Leftrightarrow200+4x+3x+x-112=132\)

\(\Leftrightarrow88+8x=132\Leftrightarrow x=\frac{11}{2}\)

13 tháng 8 2020

                                                         Bài giải

\(\left(\frac{3}{5}\right)^5\cdot x=\left(\frac{3}{4}\right)^7\)

\(\frac{3^5}{5^5}\cdot x=\frac{3^7}{4^7}\)

\(x=\frac{3^7}{4^7}\text{ : }\frac{3^5}{5^5}=\frac{3^7}{4^7}\cdot\frac{5^5}{3^5}=\frac{3^2\cdot5^5}{4^7}=\frac{28125}{16384}\)

13 tháng 8 2020

Ta có : 

\(2a^2+24a+80=2a^2+24a+72+8=2\left(a+6\right)^2+8\)

Vì \(\left(a+6\right)^2\ge0\forall a\Rightarrow2\left(a+6\right)^2+8\ge8\) 

Dấu "=" xảy ra \(\Leftrightarrow2\left(a+6\right)^2=0\Leftrightarrow a+6=0\Leftrightarrow a=-6\)

Vậy GTNN của bt trên là 8 <=> a = - 6

13 tháng 8 2020

Ta có : 

\(2a^2+24a+80=2a^2+24a+72+8=2\left(a+6\right)^2+8\)

Vì \(\left(a+6\right)^2\ge0\forall a\Rightarrow2\left(a=6\right)^2+8\ge8\)

Dấu '=' xảy ra \(\Leftrightarrow2\left(a+6\right)^2=0\)

\(\Leftrightarrow a+6=0\Leftrightarrow a=-6\)

Vậy GTNN của biểu thức trên là 8 .\(\Leftrightarrow a=-6\)

13 tháng 8 2020

Bài 2 :                                                               Bài giải

\(a,\text{ }\sqrt{\frac{81}{100}}-\sqrt{0,49}+9,3=\sqrt{\frac{9^2}{10^2}}-\sqrt{\frac{49}{100}}+9,3=\frac{9}{10}-\sqrt{\frac{7^2}{10^2}}+9,3\)

\(=\frac{9}{10}-\frac{7}{10}+9,3=\frac{1}{5}+9,3=0,2+9,3=9,5\)

\(b,\text{ }\frac{7}{17}+\frac{10}{17}\cdot\left(\frac{-3}{5}+\frac{1}{2}\right)^2=\frac{7}{17}+\frac{10}{17}\cdot\left(-\frac{1}{10}\right)^2=\frac{7}{17}+\frac{10}{17}\cdot\frac{1}{100}=\frac{70}{170}+\frac{1}{170}=\frac{71}{170}\)

\(c,\text{ }\sqrt{121}-0,25+\sqrt{\frac{25}{36}}=11-\frac{1}{4}+\frac{5}{6}=\frac{132}{12}-\frac{3}{12}+\frac{10}{12}=\frac{139}{12}\)

13 tháng 8 2020

Bài 2 : 

a ) \(\sqrt{\frac{81}{100}}-\sqrt{0,49}+9,3=\sqrt{\frac{9^2}{10^2}}-\sqrt{\frac{49}{100}}+9,3\)

\(=\frac{9}{10}-\sqrt{\frac{7^2}{10^2}}+9,3=\frac{9}{10}-\frac{7}{10}+9,3\)

\(=\frac{1}{5}+9,3=0,2+9,3=9,5\)

b ) \(\frac{7}{17}+\frac{10}{17}\cdot\left(\frac{-3}{5}+\frac{1}{2}\right)^2=\frac{7}{17}+\frac{10}{17}\cdot\left(-\frac{1}{10}\right)^2=\frac{7}{17}+\frac{10}{17}\cdot\frac{1}{100}\)

\(=\frac{70}{170}+\frac{1}{170}=\frac{71}{170}\)

c ) \(\sqrt{121}-0,25+\sqrt{\frac{25}{36}}=11-\frac{1}{4}+\frac{5}{6}\)

\(=\frac{132}{12}-\frac{3}{12}+\frac{10}{12}=\frac{139}{12}\)

13 tháng 8 2020

1. Thay x = 1 vào đa thức f (x) = ax2 + bx + c . Ta có :

f ( x ) = a.12 + b.1 + c

         = a + b + c

         = 0

Vậy x = 1 là nghiệm của f ( x )

13 tháng 8 2020

Bài 1 :

Giả sử x = 1 là nghiệm của đa thức f (x) = ax2 + bx + c

=> f (x) = a . 12 + b . 1 + c = 0

<=> f(x) = a + b + c = 0 

Vậy nếu a + b + c = 0 thì x = 1 là nghiệm của đa thứ f (x)

Bài 2 :

a) \(\left(x-2\right)\left(2x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy nghiệm của đa thức là x=2 hoặc x=4

b) \(\left(3x-9\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-9=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

Vậy .................

c) \(\left(x-3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x-3=0\left(x^2+1>0\right)\)

\(\Leftrightarrow x=3\)

Vậy .............

d) \(\left(x^2+2\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow x^2-3=0\left(x^2+2>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy...............

Hình tự vẽ

phần a cậu có thể tự làm :))

b+c)Xét \(\Delta\)ABD và\(\Delta\) EBD có:

AB=AE(gt)

BD(chung)

góc B1 = góc B2

=> \(\Delta\)ABD=\(\Delta\)EBD

=> AD=DE

=>\(\Delta\)ADE cân tại D(2)

Mà BD là tia pg(1)

Từ (1) và (2) => BD là đường cao của tam giác ABC

=> BD\(\perp\) AE

~Hok tốt~

               

\(\Delta\)

À ừ :vv tớ giải all lại nek

a) \(\Delta\)ABC là tam giác vuông

b+c) Xét \(\Delta\)ABD và \(\Delta\) EBD có:

AB=BE(gt)

BD(chung)

Góc B1=góc B2

=>\(\Delta\)ABD=\(\Delta\)EBD

=>AD= ED

=>\(\Delta\)ADE cân tại D(1)

Mà BD là tí pg của góc B(2)

Từ (1) và (2) => BD là đường cao của \(\Delta\)ABC

=>BD\(\perp\)AE

d) Ta có: BD\(\perp\) FC

               AE\(\perp\)BC

Mà D là trực tâm 

=> AE // FC

~Hok tốt :^~

               

17 tháng 8 2020

Vì \(\frac{a}{b}>\frac{c}{d}>\frac{e}{g}\Rightarrow\hept{\begin{cases}ad>bc\\cg>ed\end{cases}}\Rightarrow\hept{\begin{cases}ad-bc>0\\cg-ed>0\end{cases}}\Rightarrow\hept{\begin{cases}ad-bc\ge1\\cg-ed\ge1\end{cases}}\)(Do a, b, c, d, g nguyên dương)

Ta có: \(d=d\left(ag-be\right)=adg-bed=\left(adg-bcg\right)+\left(bcg-bed\right)\)

\(=g\left(ad-bc\right)+b\left(cg-ed\right)\ge g.1+b.1=b+g\)

Ta có điều phải chứng minh

13 tháng 8 2020

\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)

\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)

\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)

\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)

\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)

\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)

\(\Rightarrow S=125,4372197\)

\(\)

4 tháng 4 2021

thx  you