K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a<b

=>a+3<b+3

mà b+3<b+5

nên a+3<b+5

Xét ΔMIB có

MD là đường cao

MD là đường trung tuyến

Do đó: ΔMIB cân tại M

=>MI=MB

Xét ΔMKC có

ME là đường cao

ME là đường trung tuyến

Do đó: ΔMKC cân tại M

=>MK=MC

Ta có: MI=MK=MB=MC

=>I,K,B,C cùng thuộc đường tròn (M)

Gọi O là trung điểm của BD

Xét ΔABD có AB=AD và \(\widehat{BAD}=60^0\)

nên ΔABD đều

Xét ΔCBD có CB=CD và \(\widehat{BCD}=60^0\)

nên ΔBCD đều

ta có: ΔABD đều

mà DE là đường trung tuyến

nên DE\(\perp\)AB

=>ΔDEB vuông tại E

=>E nằm trên đường tròn đường kính BD(1)

Ta có: ΔABD đều

mà BH là đường trung tuyến

nên BH\(\perp\)AD tại H

=>ΔBHD vuông tại H

=>H nằm trên đường tròn đường kính BD(2)

Ta có: ΔCBD đều

mà DF là đường trung tuyến

nên DF\(\perp\)BC tại F

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔCBD đều

mà BG là đường trung tuyến

nên BG\(\perp\)CD tại G

=>G nằm trên đường tròn đường kính BD(4)

Từ (1),(2),(3),(4) suy ra E,H,D,G,F,B cùng thuộc một đường tròn

ΔCAB cân tại C

mà CP là đường trung tuyến

nên CP\(\perp\)AB tại P

=>ΔPBC vuông tại P

Xét ΔCAB cân tại B có BN là đường trung tuyến

nên BN\(\perp\)AC tại N

=>ΔBNC vuông tại N

Xét tứ giác BPNC có \(\widehat{BPC}=\widehat{BNC}=90^0\)

nên BPNC là tứ giác nội tiếp đường tròn đường kính BC

=>B,P,N,C cùng thuộc đường tròn đường kính BC

=>\(R=\dfrac{BC}{2}=\dfrac{a}{2}\)

\(\text{Δ}=\left[2\left(m+3\right)\right]^2-4\cdot1\cdot\left(4m+2\right)\)

\(=4m^2+24m+36-16m-8\)

\(=4m^2+8m+28=4m^2+8m+4+24=\left(2m+2\right)^2+24>=24>0\forall m\)

=>Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+6\\x_1x_2=\dfrac{c}{a}=4m+2\end{matrix}\right.\)

\(\sqrt{x_1-1}+\sqrt{x_2-1}=3\)

=>\(x_1-1+x_2-1+2\sqrt{\left(x_1-1\right)\left(x_2-1\right)}=9\)

=>\(2m+6-2+2\sqrt{x_1x_2-\left(x_1+x_2\right)+1}=9\)

=>\(2m+4+2\sqrt{4m+2-2m-6+1}=9\)

=>\(2\sqrt{2m-3}=9-2m-4=-2m+5\)

=>\(\sqrt{8m-12}=-2m+5\)

=>\(\left\{{}\begin{matrix}-2m+5>=0\\\left(-2m+5\right)^2=8m-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< =\dfrac{5}{2}\\4m^2-20m+25-8m+12=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =\dfrac{5}{2}\\4m^2-28m+37=0\end{matrix}\right.\Leftrightarrow m=\dfrac{7-2\sqrt{3}}{2}\)

Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{AH}{6}=sin40\)

=>\(AH=6\cdot sin40\simeq3,86\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{AB^2-AH^2}\simeq4,59\left(cm\right)\)

Ta có: ΔAHB vuông tại H

=>\(\widehat{HAB}+\widehat{HBA}=90^0\)

=>\(\widehat{HAB}=90^0-40^0=50^0\)

Ta có: \(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}\)

=>\(\widehat{HAC}=60^9-50^0=10^0\)

Xét ΔAHC vuông tại H có \(tanHAC=\dfrac{HC}{AH}\)

=>\(\dfrac{HC}{3,86}=tan10\)

=>\(HC\simeq0,68\left(cm\right)\)

ΔHAC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AC\simeq\sqrt{0,68^2+3,86^2}\simeq3,92\left(cm\right)\)

31 tháng 7 2024

cho em coin