Cho hình thang cân ABCD ( AD//BC; AD < BC ). Gọi O là giao điểm của hai đường chéo. Chứng minh: OA=OD; OB=OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(A=\left(x-3\right)\left(x+5\right)+20\)
\(\Leftrightarrow A=x^2+5x-3x-15+20\)
\(\Leftrightarrow A=x^2+2x+5\)
\(\Leftrightarrow A=x^2+2x+1+4\)
\(\Leftrightarrow A=\left(x+1\right)^2+4\ge4\)
GTNN của A = 4
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ..........................

a, \(A=\left(100+50\right)^2=22500\)
b, \(B=\left(127+73\right)^2=40000\)
c, \(C=-6x+25\)Thay x = 100 ta có :
\(C=-6.100+25=-600+25=-575\)
\(A=100^2+200.50+50^2\)
\(=100^2+2.100.5+50^2\)
\(=\left(100+50\right)^2=150^2\)
\(B=127^2+146.127+73^2\)
\(=127^2+2.73.127+73^2\)
\(=\left(127+73\right)^2=200^2\)

\(a,\left(x^2+2\right)\left(x^4-2x^2+4\right)=\left(x^2\right)^3+8=x^6+8\)
\(b,\left(x-\frac{1}{3}\right)\left(x^2+\frac{x}{3}+\frac{1}{9}\right)=x^3-\frac{1}{27}\)
\(c,\left(\frac{1}{2}-x\right)\left(\frac{1}{4}+\frac{1}{2}x+x^2\right)=\frac{1}{8}-x^3\)
\(d,\left(x^2+3\right)\left(x^4-3x^2+9\right)=x^6+27\)
\(e,\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1\)
a) \(\left(x^2+2\right)\left(x^4-2x^2+4\right)=\left(x^2\right)^3+2^3=x^8+8\)
b) \(\left(x-\frac{1}{3}\right)\left(x^2+\frac{x}{3}+\frac{1}{9}\right)=[x^3-\left(\frac{1}{3}\right)^3]=x^3-\frac{1}{9}\)
c) \(\left(\frac{1}{2}-x\right)\left(\frac{1}{4}+\frac{1}{2}x+x^2\right)=[\left(\frac{1}{2}\right)^3-x^3]=\frac{1}{8}-x^3\)
d) \(\left(x^2+3\right)\left(x^4-3x^2+9\right)=\left(x^2\right)^3+3^3=x^8+27\)
e) \(\left(2x+1\right)\left(4x^2-2x+1\right)=\left(2x\right)^3+1^3=8x^3+1\)

\(=\left(x+y-2\right)^2\)
Vậy nó \(=\left(x+y-2\right)^2\)
ĐỀ BÀI BỊ THIẾU HAY SAO ZẬY ??

a) Áp dụng hằng đằng thức hiệu của 2 bình phương ta có
\(x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)


A, x(x+y)-(2x+2y)
A=x(x+y)-2(x+y)
A=(x+y)(x-2)
B, 5x(x-2y)+2(y-x)
Đề câu này thấy sai sai á bạn
Check đề hộ mình nha.
( Hình tự vẽ nha bạn )
giải
Ta có: ∠(ADC) = ∠(BCD) (gt)
⇒ ∠(ODC) = ∠(OCD)
⇒ΔOCD cân tại O (dhnb tam giác cân)
⇒ OC = OD
OB + BC = OA + AD
Mà AD = BC (tính chất hình thang cân)
⇒ OA = OB
Xét ΔADC và. ΔBCD:
AD = BC (hình thang ABCD cân )
AC = BD (hình thang ABCD cân)
CD chung
Do đó ΔADC và ΔBCD (c.c.c)
⇒ ∠ADC= ∠BCD (2 góc tương ứng)
⇒ΔEDC cân tại E (dhnb tam giác cân)
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (tính chất hình thang cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.