so 3^50 + 1 co la tich cua 2 so tu nhien lien tiep khong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Tam giác \(ACD\)vuông tại \(C\)đường cao \(CB\):
\(cd=ab\)
\(\Leftrightarrow c^2d^2=a^2b^2\)
\(\Leftrightarrow\frac{1}{d^2}=\frac{c^2}{a^2b^2}=\frac{a^2+b^2}{a^2b^2}=\frac{1}{a^2}+\frac{1}{b^2}\).

Để hoàn thành 1 công việc, 2 tổ làm chung trong vòng 6h
--> Trong 1 giờ, 2 tổ làm chung được 1/6 công việc.
--> Sau 2h làm chung, số phần công việc đã hoàn thành là 2/6 công việc-->Số công việc còn lại là 1 - 2/6 =2/3 công việc
Để làm xong 2/3 công việc còn lại, tổ 1 đã mất 10h, vậy số phần công việc mà tổ 1 làm độc lập trong 1 giờ là: 2/3 : 10 =1/15 công việc--> Nếu làm riêng thì tổ 1 sẽ mất 15h để hoàn thảnh cả công việc.
Trong 1 h, 2 tổ làm chung được 1/6 công việc nhưng trong 1/6 công việc làm được đó tổ 1 đã làm 1/15 công việc--> Nếu làm độc lập thì trong 1 h tổ 2 sẽ hoàn thành: 1/6 - 1/15 = 1/10 công việc
--> Nếu làm riêng thì tổ 2 sẽ mất 10 h để hoàn thành cả công việc.

Đáp án:
P=±36P=±36
Giải thích các bước giải:
Ta có:
x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36
Vậy P=±36P=±36.
Ta có nhận xét: tích của hai số tự nhiên liên tiếp chia cho \(3\)chỉ có thể có số dư là \(0\)hoặc \(2\).
Chứng minh:
Giả sử tích đó là \(a\left(a+1\right)\).
Nếu \(a=3k\)hoặc \(a=3k+2\)thì tích \(a\left(a+1\right)⋮3\).
Nếu \(a=3k+1\)thì \(a\left(a+1\right)=\left(3k+1\right)\left(3k+2\right)=9k^2+9k+2\)chia cho \(3\)dư \(2\).
Do đó ta có đpcm.
Mà ta có \(3^{50}+1\)chia cho \(3\)dư \(1\)do đó \(3^{50}+1\)không thể là tích của hai số tự nhiên liên tiếp.