Chứng tỏ rằng với mỗi số tự nhiên n thì: n mũ 2 + n luôn chia hết cho 2.
Làm nhanh giúp mình luôn nhaaaaaaaaaaaaaaaaa
Pleaseeeeeeeeeeee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
71⁵⁰ = (71²)²⁵ = 5041²⁵
37⁷⁵ = (37³)²⁵ = 50653²⁵
Do 5041 < 50653 nên 5041²⁵ < 50653²⁵
Vậy 71⁵⁰ < 37⁷⁵
=(71^2)^25 và (37^3)^25
=5041^25 và 50653^25
vì 5041^25<50653^25
suy ra:71^50<37^75
x - y = 34 6x - y = 101
Giải hệ phương trình này, ta có:
x = 45 y = 11
Vậy hai số đó là 45 và 11.
a) \(C=5+5^2+5^3+...+5^8\)
\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)
\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)
\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)
Vậy C chia hết cho 30
b) \(D=2+2^2+2^3+...+2^{60}\)
\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)
\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)
Vậy D chia hết cho 3
\(D=2+2^2+2^3+...+2^{60}\)
\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy D chia hết cho 7
\(D=2+2^2+2^3+...+2^{60}\)
\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)
\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)
\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)
Vậy D chia hết cho 15
a) C = 5 + 5² + 5³ + ... + 5⁸
= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)
= 30 + 5².30 + 5⁴.30 + 5⁶.30
= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30
Vậy C ⋮ 30
b) *) Chứng minh D ⋮ 3
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy D ⋮ 3 (1)
*) Chứng minh D ⋮ 7
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy D ⋮ 7 (2)
*) Chứng minh D ⋮ 15
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)
= 2.15 + 2⁵.15 + ... + 2⁵⁷.15
= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15
Vậy D ⋮ 15 (3)
Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15
Ta có: \(10^{50}+44\)
Mà: \(10^{50}=100...0\) (50 số 0)
\(10^{50}\) có chữ số cuối cùng là 0 nên \(10^{50}\) ⋮ 2
Và: \(44\) ⋮ 2 \(\Rightarrow10^{50}+44\) ⋮ 2
________
Ta có: \(10^{50}+44\)
Mà: \(10^{50}=100...0\) (50 số 0)
Tổng các chữ số là: \(1+0+...+0=1\)
Tổng các chữ số của 44 là: \(4+4=8\)
\(\Rightarrow10^{50}+44\) có tổng các chữ số là: \(1+8=9\) ⋮ 9
Nên: \(10^{50}+44\) ⋮ 9
10⁵⁰ ⋮ 2
44 ⋮ 2
⇒ (10⁵⁰ + 44) ⋮ 2
*) Ta có:
10⁵⁰ = 1000...000 (50 chữ số 0)
⇒ 10⁵⁰ + 44 có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 4 + 4 = 9 ⋮ 9
⇒ (10⁵⁰ + 44) ⋮ 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
Ta có n2 + n = n( n + 1 )
Nếu n chẵn → n ⋮ 2 → [ n( n + 1 )] ⋮ 2
Nếu n lẻ → n + 1 chẵn → ( n + 1 ) ⋮ 2 → [ n( n + 1 )] ⋮ 2
Vậy với mọi số tự nhiên n thì ( n2 + n ) ⋮ 2