K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Ta có : \(y=\sin\left(\ln x\right)+\cos\left(\ln x\right)\Rightarrow\begin{cases}y'=\frac{1}{x}\cos\left(\ln x\right)-\frac{1}{x}\sin\left(\ln x\right)=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\\y"=\frac{\left[-\frac{1}{x}\sin\left(\ln x\right)-\frac{1}{x}\cos\left(\ln x\right)\right]x-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\end{cases}\)

\(\Rightarrow y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

=> Điều cần chứng minh

5 tháng 5 2016

Ta có \(y'=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\)

                 \(\Rightarrow y"=\frac{x.\frac{-\sin\left(\ln x\right)-\cos\left(\ln x\right)}{x}-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\)

Ta có : 

            \(y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

12 tháng 5 2016

Ta có : \(y=\frac{1}{1+x+\ln x}\Rightarrow y'=\frac{-\left(1+\frac{1}{x}\right)}{\left(1+x+\ln x\right)^2}=\frac{-\left(1+x\right)}{x\left(1+x+\ln x\right)^2}\)

\(\Rightarrow\begin{cases}xy'=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\\y\left(y\ln x-1\right)=\frac{1}{1+x+\ln x}\left(\frac{\ln}{1+x+\ln x}-1\right)=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\end{cases}\)

\(\Rightarrow xy'=y\left(y\ln x-1\right)\Rightarrow\) Điều phải chứng minh

12 tháng 5 2016

Ta có \(y'=\frac{\frac{1}{x}x\left(1-\ln x\right)-\left[1-\ln x+x\left(-\frac{1}{x}\right)\right]\left(1+\ln x\right)}{x^2\left(1-\ln x\right)^2}=\frac{1-\ln x+\ln x\left(1+\ln x\right)}{x^2\left(1-\ln x\right)^2}=\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}\)

\(\Rightarrow\begin{cases}2x^2y'=2x^2\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}=\frac{2\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}\\x^2y^2+1=x^2\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}+1=\frac{\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}+1=\frac{2\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}\end{cases}\)

\(\Rightarrow2x^2y'=x^2y^2+1\Rightarrow\) Điều phải chứng minh

12 tháng 5 2016

Ta có : \(y=\ln\left(\frac{1}{1+x}\right)\Rightarrow y'=\frac{-\frac{1}{\left(1+x\right)^2}}{\frac{1}{1+x}}=\frac{-1}{1+x}\)

\(\Rightarrow\begin{cases}xy'+1=\frac{-x}{1+x}+1=\frac{1}{1+x}\\e^y=e^{\ln\left(\frac{1}{1+x}\right)}=\frac{1}{1+x}\end{cases}\)

\(\Rightarrow xy'+1=e^y\) (điều phải chứng minh)

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

5 tháng 5 2016

Ta có : \(y'=\frac{-1-\frac{1}{x}}{\left(1+x+\ln x\right)^2}=-\frac{x+1}{x\left(1+x+\ln x\right)^2}\) 

        \(\Rightarrow xy'=-\frac{x+1}{\left(1+x+\ln x\right)^2}\)    (1)

Lại có \(y\left(y\ln x-1\right)=\frac{-1-x}{\left(1+x+\ln x\right)^2}\)   (2)

Từ (1) và (2) suy ra \(xy'=y\left(y\ln x-1\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)

Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)

b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)

20 tháng 5 2016

\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x^3+x^2y+xy^2-yx^2-xy^2-y^3\right)\)\(-\left(x^3-x^2y+xy^2+yx^2-xy^2+y^3\right)\)

\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3-x^3+x^2y-xy^2-yx^2+xy^2-y^3\)

\(=-2y^3\)

20 tháng 5 2016

\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)

\(x-y.x^2+xy+y^2-x-y.x^2-xy+y^2=-2y^3\)

\(\left(x+x-x-x\right)-\left(y.y-y\right).\left(x^2.x^2\right)+\left(y^2+y^2\right)=-2y^3\)

\(0-\left(2y-y\right).x^4+2y^2=-2y^3\)

\(0-y.x^4+2y^2=-2y^3\)

\(-y.y^2.x^4+2=-2y^3\)

\(-y^3.x^4+2=-2y^3\)

hình như mk lm sai mk sẽ lm lại cách # thử