K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\frac{2018}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ac}-\frac{2017}{a^2+b^2+c^2}\)

\(P\ge2018\left(\frac{4}{a^2+b^2+c^2+ab+bc+ac}\right)-\frac{2017}{a^2+b^2+c^2}\)

\(P\ge\frac{2018.8}{\left(a+b+c\right)^2}-\frac{2017}{a^2+b^2+c^2}=\frac{2018.8}{9}-\frac{2017}{a^2+b^2+c^2}\)

Vì \(9=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)

\(P\ge\frac{2018.8}{9}-\frac{2017}{3}=...\)

P min = ... khi a=b=c = 1

8 tháng 7 2019

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT cosi

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)

Tương tự 

=> \(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c\right)\)

Lại có \(\left(a+b+c\right)\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{9}{1}=9\)

=> \(A\ge\frac{9}{4}\)

MinA=9/4 khi a=b=c=3

29 tháng 12 2016

theo bài ra ta có:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

=> \(\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)

=> \(\frac{abc}{ca+cb}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)

vì a,b,c khác 0 => ca+cb = ab+ac = bc+ba

=> a = b = c

ta có:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

vậy M = 1

29 tháng 10 2016

Mik ko bk đúng hay sai đâu nha!Đại số lớp 7

5 tháng 7 2016

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\)

=>\(\frac{1}{a^2}=-\left(\frac{1}{ab}+\frac{1}{ca}\right)\)

cm tương tự: \(\frac{1}{b^2}=-\left(\frac{1}{ab}+\frac{1}{bc}\right)\)

                     \(\frac{1}{c^2}=-\left(\frac{1}{ca}+\frac{1}{bc}\right)\)

=> \(N=-\left[bc\left(\frac{1}{ab}+\frac{1}{ca}\right)+ca\left(\frac{1}{ab}+\frac{1}{bc}\right)+ab\left(\frac{1}{ca}+\frac{1}{bc}\right)\right]\)

          \(=-\left[\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right]\)

            \(=-\left[\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right]\)    (1)

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=>\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=0\)

=>\(1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}=0\)

=>\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-3\)   (2)

Từ (1) và (2) =>N=3

        

1 tháng 7 2017

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)