K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}a\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}a-\frac{1}{8}b-\frac{1}{8}-\frac{1}{4}\)

\(\Sigma\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) :) 

NV
1 tháng 3 2020

Bạn tham khảo:

Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến

16 tháng 2 2021

giúp với 

19 tháng 2 2022

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)

Hoàn toàn tương tự ta có:

\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);

\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo bất đẳng thức trên ta được:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{1}{6\left(ab+bc+ca\right)}\)

Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)

9 tháng 11 2016

a/ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ; \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế :

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

b/ \(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)

\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{b+2c+a}\)

\(\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{4}{c+b+2a}\)

Cộng theo vế :

\(2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)

 

1 tháng 12 2019

bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{a}{bc}\ge\frac{9}{2}\)

mặt khác: \(\Sigma_{cyc}\frac{a}{bc}=\frac{1}{2}\Sigma_{cyc}\left(\frac{b}{ca}+\frac{c}{ab}\right)\ge\Sigma\frac{1}{a}\)\(\Rightarrow\)\(\Sigma_{cyc}\frac{a}{bc}\ge\Sigma_{cyc}\frac{1}{a}\)

do đó cần CM: \(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{1}{a}\ge\frac{9}{2}\) (1) 

\(VT_{\left(1\right)}=\Sigma_{cyc}\left(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\)

"=" \(\Leftrightarrow\)\(a=b=c=1\)