K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Link

bạn tham khảo link đó nhé

19 tháng 5 2019

\(A=\left(\frac{2xy}{x^2+y^2}\right)^2+\frac{x^4+y^4+2\left(xy\right)^2}{\left(xy\right)^2}-2=4\left(\frac{xy}{x^2+y^2}\right)^2+\left(\frac{x^2+y^2}{xy}\right)^2-2\)

\(=\left(\frac{2xy}{x^2+y^2}\right)^2+\left(\frac{x^2+y^2}{2xy}\right)^2+3\left(\frac{x^2+y^2}{2xy}\right)^2-2\)

\(\ge2\sqrt{\left(\frac{2xy}{x^2+y^2}\right)^2.\left(\frac{x^2+y^2}{2xy}\right)^2}+3\left(\frac{2xy}{2xy}\right)^2-2=3\)

28 tháng 7 2015

\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)

\(x^{16}+y^{16}+1+1+1+1+1+1\ge8\sqrt[8]{x^{16}y^{16}}=8x^2y^2\)

\(\Rightarrow A\ge x^4y^4+\frac{1}{4}\left(8x^2y^2-6\right)-\left(x^4y^4+2x^2y^2+1\right)=-\frac{5}{2}\)

Dấu "=" xảy ra khi \(x^2=y^2=1\)

Vậy GTNN của A là -5/2.

8 tháng 2 2021

1. Áp dụng Min - cốp - ski, ta được: \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)\(\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)\(\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)(Bunyakovsky dạng phân thức)

Đặt \(t=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)thì ta cần chứng minh: \(\sqrt{\frac{729}{4t^2}+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow\frac{729}{4t^2}+t^2\ge\frac{117}{4}\)\(\Leftrightarrow\frac{\left(t+3\right)\left(t-3\right)\left(2t+9\right)\left(2t-9\right)}{4t^2}\ge0\)*đúng bởi \(t-3\le0;t+3>0;2t+9>0;2t-9< 0;4t^2>0\)*

Đẳng thức xảy ra khi t = 3 hay a = b = c = 1

2. Ta có: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3=\frac{\left(x^2-y^2\right)^2\left(x^4+y^4+x^2y^2\right)}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

Đẳng thức xảy ra khi x = y

4 tháng 2 2018

https://olm.vn/hoi-dap/question/850271.html

22 tháng 5 2020

Ta có: \(x^2\left(y+z\right)\ge x^2.2\sqrt{yz}=2\sqrt{x^4}.\sqrt{\frac{1}{x}}=2x\sqrt{x}\)(Áp dụng BĐT Cô - si cho 2 số dương y,z và sử dụng giả thiết xyz = 1)

Hoàn toàn tương tự: \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2\left(x+y\right)\ge2z\sqrt{z}\)

Do đó \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)

\(\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(a=x\sqrt{x}+2y\sqrt{y}\)\(b=y\sqrt{y}+2z\sqrt{z}\)\(c=z\sqrt{z}+2x\sqrt{x}\)

Suy ra: \(x\sqrt{x}=\frac{4c+a-2b}{9}\)\(y\sqrt{y}=\frac{4a+b-2c}{9}\)\(z\sqrt{z}=\frac{4b+c-2a}{9}\)

Do đó \(P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}\right)\)

\(=\frac{2}{9}\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\)

\(\ge\frac{2}{9}\left[4.3\sqrt[3]{\frac{c}{b}.\frac{a}{c}.\frac{b}{a}}+3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-6\right]\)(Áp dụng BĐT Cô - si cho 3 số dương)

\(=\frac{2}{9}\left[4.3+3-6\right]=2\)

Vậy \(P\ge2\)

Đẳng thức xảy ra khi x = y = z = 1

28 tháng 4 2020

Ap dung \(a^2+b^2+c^2\ge ab+bc+ac\)

\(A\ge\frac{2xy}{x^2+y^2}.\frac{x}{y}+\frac{2xy}{x^2+y^2}.\frac{y}{x}+\frac{x}{y}.\frac{y}{x}\)

\(\ge\frac{2x^2}{x^2+y^2}+\frac{2y^2}{x^2+y^2}+1\ge2+1=3\)

Dau "=" xay ra \(\Leftrightarrow x=\pm y\)

28 tháng 4 2020

A\(=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\)

\(=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^4+y^4}{x^2y^2}\ge\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2y^2}\)

\(=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{\left(x^2+y^2\right)^2}{4x^2y^2}+\frac{\left(x^2+y^2\right)^2}{4x^2y^2}\ge2+\frac{\left(2xy\right)^2}{4x^2y^2}=3\) ( cô si)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2=y^2\\\frac{4x^2y^2}{\left(x^2+y^2\right)^2}=\frac{\left(x^2+y^2\right)^2}{4x^2y^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=y^2\\16x^2y^2=\left(x^2+y^2\right)^4\end{cases}}\)<=> x = y hoặc x = -y

Vậy minA = 3 tại x = y hoặc x = -y

23 tháng 11 2015

\(Q=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)

 \(\ge\left(\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}\cdot\frac{y^{10}}{x^2}}-x^4y^4\right)+\left[\frac{2x^8y^8}{4}-2x^2y^2\right]-1\)

\(\ge\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-2x^2y^2-\frac{3}{2}-1\ge4\sqrt[4]{\frac{x^8y^8}{2.2.2.2}}-\frac{3}{2}-1=2x^2y^2-2x^2y^2-\frac{5}{2}=-\frac{5}{2}\)

Vậy min Q = -5/2 tại x = y = +-1 

23 tháng 11 2015

Còn cách đặt ẩn phụ thế này: 

\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}+\frac{1}{4}.2\sqrt{x^{16}.y^{16}}-\left(x^4y^4+2x^2y^2+1\right)\)\(=\frac{x^8y^8}{2}-4x^2y^2-2\)

Đặt x2y2 = t >= 0. Khi đó:

\(2Q=t^4-4t-2=\left(t^4-2t^2+1\right)+2\left(t^2-2t+1\right)+5=\left(t^2-1\right)^2+2\left(t-1\right)^2+5\ge5\Rightarrow Q\ge\frac{5}{2}\)Xảy ra đẳng thức khi và chỉ khi x = y =+-1