K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 10 2019

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\Leftrightarrow\frac{a+b+c}{abc}=0\)

\(\Rightarrow a+b+c=0\)

\(P=a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)⋮3\)

8 tháng 10 2019

Câu 2, Do 0<x,y,z<=1 nên ta có:

\(\hept{\begin{cases}\left(x-1\right)\left(y-1\right)\ge0\\\left(y-1\right)\left(z-1\right)\ge0\\\left(z-1\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}xy+1\ge x+y\\yz+1\ge y+z\\xz+1\ge x+z\end{cases}}}\) 

Thay vào VT ta có:

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)(1)

Do x,y,z <= 1 nên x+y+z <=3 nên \(\frac{3}{x+y+z}\ge\frac{3}{3}=1\)(2)

Từ (1),(2) -> dpcm

9 tháng 10 2019

1/ Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\)

Khi đó \(3=a+b+c\le3a\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Ta có:

\(LHS=a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)

\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)

\(=9a^2-27a+27=9\left(a-1\right)\left(a-2\right)+9\le9\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị.

P/s: Is that true?

22 tháng 11 2015

1?   xem lại đề bài

22 tháng 11 2015

2/  Ta có: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(bx-ay\right)^2}{xy\left(x+y+z\right)}+\frac{\left(cy-bz\right)^2}{yz\left(x+y+z\right)}+\frac{\left(az-cx\right)^2}{zx\left(x+y+z\right)}+\frac{\left(a+b+c\right)^2}{x+y+z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Xảy ra đẳng thức <=> bx = ay ; cy = bz ; az = cx

1/ Áp dụng BĐT ở phần 2 ta có: 

\(\frac{1}{a}+\frac{4}{b}+\frac{3}{c}=\frac{3}{3a}+\frac{12}{3b}+\frac{3}{c}\ge\frac{\left(\sqrt{3}+2\sqrt{3}+\sqrt{3}\right)^2}{3a+3b+c}=\frac{\left(4\sqrt{3}\right)^2}{12}=4\)

Bạn tự tìm DK xảy ra dấu =

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

27 tháng 7 2018

KHÔNG BIẾT

26 tháng 6 2019

5/ Tưỡng dễ ăn = sos + bđt phụ ai ngờ....hic...

\(BĐT\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2+b^2+c^2}{a+b+c}-\frac{a^2+b^2}{a+b}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(a^2+b^2+c^2\right)\left(a+b\right)-\left(a^2+b^2\right)\left(a+b+c\right)}{\left(a+b+c\right)\left(a+b\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)-bc\left(b-c\right)}{\left(a+b+c\right)\left(a+b\right)}\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(a+b\right)}-\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(b+c\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)}\ge0\left(\text{đúng}\right)\)

Ai ngờ nổi khi không dùng BĐT phụ lại dễ hơn cái kia chứ -_-

26 tháng 6 2019

Ây za,nhầm dòng cuối cùng xíu ạ:

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)\left(a+b\right)\left(b+c\right)}\ge0\left(\text{đúng}\right)\) -_- đánh thiếu một chút lại ra nông nỗi -_-

4 tháng 10 2019

TA có \(\frac{2}{b}=\frac{1}{a}+\frac{1}{b}\)

=>\(\frac{2}{b}-\frac{1}{b}=\frac{1}{a}\)

=>\(\frac{1}{b}=\frac{1}{a}\)

=>\(a=b\)thay vào P:

\(P=\frac{a+b}{2a-b}+\frac{c+d}{2c-b}\)

=>\(P=\frac{2a}{a}+\frac{2c}{c}\)

=>\(P=4\)