K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

+ Để chứng minh những mệnh đề liên quan đến số tự nhiên n ∈ N* là đúng với mọi n mà không thể thử trực tiếp được thì ta làm như sau:

Bước 1: Kiểm tra mệnh đề đúng với n = 1 .

Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1. Chứng minh rằng nó cũng đúng với n = k+1.

Bước 3: Kết luận mệnh đề đúng với n ∈ N*.

+ Ví dụ: Chứng minh rằng với mọi n ∈ N* ta có: n3 + 5n chia hết cho 6.

Chứng minh: Đặt P(n) = n3 + 5n.

Với n =1 ⇒ P(1) = 6 ⋮ 6

Giả sử (Pn) chia hết cho 6 đúng với n=k ≥1, nghĩa là, ta có:

P(k) = (k3 + 5k) ⋮ 6.

Ta có: P(k+1) = (k+1)+ 5(k+1) = k3 + 3k2 + 3k + 1 + 5k + 5 = k3 + 5k + 3(k2 + k) + 6

Mặt khác, theo giả thiết quy nạp ta có: k3 + 5k ⋮6.

Hơn nữa k2 + k = k(k+1) : 2 ( hai số tự nhiên tiếp k, k +1 phải có một số chẵn do k(k+1):2).

Do vậy P(k+1)⋮6. Tức mệnh đề đúng với n = k + 1.

Theo nguyên lí quy nạp, ta có P(n) = n3 + 5n chia hết cho 6 với mọi n ∈ N*.

29 tháng 11 2021

Với \(n=0\Rightarrow0-0+0-0+0-0=0⋮24\left(đúng\right)\)

Với \(n=1\Rightarrow1-3+6-7+5-2=0⋮24\left(đúng\right)\)

G/s \(n=k\Rightarrow\left(k^6-3k^5+6k^4-7k^3+5k^2-2k\right)⋮24\)

\(\Rightarrow k\left(k^5-3k^4+6k^3-7k^2+5k-2\right)⋮24\\ \Rightarrow k\left(k+1\right)\left(k^2+k+1\right)\left(k^2-k+2\right)⋮24\)

Với \(n=k+1\), ta cần cm \(\left[\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\right]⋮24\)

Ta có \(\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\)

\(=\left(k+1\right)\left[\left(k+1\right)^5-3\left(k+1\right)^4+6\left(k+1\right)^3-7\left(k+1\right)+5\left(k+1\right)-2\right]\\ =\left(k+1\right)\left(k+1-1\right)\left[\left(k+1\right)^2-\left(k+1\right)+1\right]\left[\left(k+1\right)^2-\left(k+1\right)+2\right]\\ =k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)\)

Mà theo GT quy nạp ta có \(k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)⋮24\)

Vậy ta được đpcm

 

NV
4 tháng 10 2021

\(n=1\Rightarrow1^1\ge1!\) đúng

Giả sử đúng với \(n=k\) hay \(k^k\ge k!\) 

Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)

Ta có:

\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)

5 tháng 10 2021

thầy cho em hỏi đáp án cuat thầy là của bài 

Sử dụng phương pháp quy nạp toán học, chứng minh: 

Với n nguyên dương, chứng minh n! ≤n

đúng không ạ em cảm ơn thầy 

 

30 tháng 6 2019

nhanh lên các bạn ơi

Dễ thấy dấu"=" xảy ra khi x=1

Giả sử bđt đúng với n=k>1 tức là

\(3^k\ge2k+1\)       (1)

Nhân cả 2 vế của (1) với 3 ta được

\(3^{k+1}\ge6k+3\Leftrightarrow3^{k+1}\ge3k+4+3k-1\)

Vì 3k-1>0

=>\(3^{k+1}\ge3\left(k+1\right)+1\)

Vậy bđt đúng với n=k+1

=> bđt được chứng minh

23 tháng 5 2019

 Hàm số cho bằng bảng

Ví dụ:

x 0 1 2 3 4
y 1 3 5 7 9

- Hàm số cho bằng công thức:

Ví dụ:

Giải bài tập Toán 11 | Giải Toán lớp 11

12 tháng 1 2019

* Với n =1  ta có 1 3 + 11.1 = 12  chia hết cho 6 đúng.

* Giả sử với n = k thì k 3   + 11 k chia hết cho 6.

* Ta phải chứng minh với n =k+1  thì ( k + 1 ) 3 + 11(k +1) chia hết cho 6.

Thật vậy ta có :

k + 1 3 + 11 k + 1 = k 3 + 3 k 2 + 3 k + 1 + 11 k + 11 = ( k 3 + 11 k ) + 3 k ( k + 1 ) + 12   *

Ta có; k 3 +11k chia hết cho 6 theo bước 2.

k(k+1) là tích 2 số tự  nhiên liên tiếp nên chia hết cho 2  ⇒ 3 k ( k + 1 ) ⋮ 6

Và 12 hiển nhiên chia hết cho 6.

Từ đó suy ra (*) chia hết cho 6 (đpcm).

24 tháng 6 2018

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

b. Dự đoán: Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

Ta chứng minh đẳng thức (1) bằng quy nạp

+ Với n = 1 thì (1) đúng.

+ Giả sử (1) đúng với n = k, tức là

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

Khi đó:

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

⇒ (1) đúng với n = k + 1, do đó đúng với mọi n ∈ N*