K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

trong sách nâng cao toán 8 của vũ hữu bình ấy bạn

19 tháng 2 2021

giả sử \(a\ge b\ge c>0\)

Ta có : \(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a\left(ab+ac-b^2-c^2\right)}{\left(b^2+c^2\right)\left(b+c\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\)

TT: \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ba\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\)

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ca\left(c-a\right)+cb\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\)

Do đó: \(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\)

\(+ca\left(a-c\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

Vì \(a\ge b\ge c\) => gtri bt > 0

=> đpcm

3 tháng 3 2017

                  \(a+b+c=3\)

              So \(\frac{1}{a2}\)

8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

8 tháng 11 2017

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}-\frac{b^2}{b+a}-\frac{c^2}{b+c}-\frac{a^2}{c+a}\)

\(=\left(\frac{a^2}{a+b}-\frac{b^2}{b+a}\right)+\left(\frac{b^2}{b+c}-\frac{c^2}{b+c}\right)+\left(\frac{c^2}{c+a}-\frac{a^2}{c+a}\right)\)

\(=a-b+b-c+c-a=0\)

Từ đây ta suy ra được

\(\hept{\begin{cases}\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\le\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\\\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\end{cases}}\)

Dấu = xảy ra khi \(|a|=|b|=|c|\)

8 tháng 11 2017

Cảm ơn bạn đã trả lời câu hỏi giúp mình

a)

Do a,b,c > 0

nên áp dụng BĐT Svacxo ta được :

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\) ( đpcm )

Dấu '=' xảy ra \(\Leftrightarrow a=b=c\)

b)

Do a,b,c > 0

nên áp dụng BĐT Svacxo ta được :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) ( đpcm )

Dấu '=' xảy ra \(\Leftrightarrow a=b=c\)