K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 8 2021

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

18 tháng 2 2020

*Tìm Max:

Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)

Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)

\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\)  (đúng)

Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.

*Tìm min:

Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)

\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )

Tương tự hai BĐT còn lại và cộng theo vế:

\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

m=1 bạn ơi 

NV
31 tháng 1 2019

\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)

\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)

\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)

\(\Rightarrow P\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=z\)

NV
8 tháng 1 2023

\(2x^2+3y^2+4z^2=21\Rightarrow2x^2\le21-3.1^2-4.1^2=14\)

\(\Rightarrow x\le\sqrt{7}\)

Tương tự ta có \(y\le\sqrt{5}\) và \(z\le2\)

Do đó:

\(\left(z-1\right)\left(z-2\right)\le0\Rightarrow z^2+2\le3z\Rightarrow4z^2+8\le12z\) (1)

\(\left(x-1\right)\left(2x-10\right)\le0\Rightarrow2x^2+10\le12x\) (2)

\(\left(y-1\right)\left(3y-9\right)\le0\Leftrightarrow3y^2+9\le12y\) (3)

Cộng vế (1);(2) và (3):

\(\Rightarrow12\left(x+y+z\right)\ge2x^2+3y^2+4z^2+27\ge48\)

\(\Rightarrow x+y+z\ge4\)

\(M_{min}=4\) khi \(\left(x;y;z\right)=\left(1;1;2\right)\)

NV
8 tháng 1 2023

Theo chứng minh ban đầu ta có: \(z\le2\Rightarrow z-2\le0\)

Theo giả thiết \(z\ge1\Rightarrow z-1\ge0\)

\(\Rightarrow\left(z-1\right)\left(z-2\right)\le0\)

Tương tự: \(x< \sqrt{5}< 5\Rightarrow x-5< 0\Rightarrow2x-10< 0\)

\(\Rightarrow\left(x-1\right)\left(2x-10\right)\le0\)

y cũng như vậy

 

30 tháng 3 2020

giúp ko biết đc j ko nhỉ ^^

ta có \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz.\)lúc đó 

\(P=\frac{2018\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2+y^2\left(x+y\right)+x^2\left(x+z\right)+z^2\left(z+y\right)}\)

\(P=2018.\frac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}=2018\)