K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV

19 tháng 6 2018

1) Bất đẳng thức cần chứng minh

\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)

Nếu : ac + bd < 0 : BĐT luôn đúng

Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương

( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )

\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)

\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh

19 tháng 6 2018

2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)

Từ câu 1) ta có :

\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)

\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)

\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)

14 tháng 1 2020

@Akai Haruma

NV
5 tháng 3 2021

1.a.

\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)

Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)

\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)

Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)

\(\Rightarrow f\left(t\right)\ge-1\)

\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)

Có 30 giá trị nguyên của m

NV
5 tháng 3 2021

1b.

Với \(x=0\)  BPT luôn đúng

Với \(x\ne0\) BPT tương đương:

\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)

\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)

Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)

\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)

Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)

\(\Rightarrow f\left(t\right)\ge6\)

\(\Rightarrow m\le6\)

Vậy có 37 giá trị nguyên của m thỏa mãn

18 tháng 12 2017

c) theo bđt cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)

cộng hết lại rút 2 đi \(\Rightarrowđpcm\)

18 tháng 12 2017

b)theo bđt bunhiacopxki ta có

\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)

\(\Rightarrowđpcm\)

25 tháng 3 2020
https://i.imgur.com/bx8s8Hy.jpg
25 tháng 3 2020
https://i.imgur.com/AISWXxC.jpg
AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

BĐT cần cm tương đương với:
$2(a^4+b^4+c^4)\geq ab^3+bc^3+ca^3+a^3b+b^3c+c^3a$

$\Leftrightarrow (a^4+b^4-a^3b-ab^3)+(b^4+c^4-b^3c-bc^3)+(c^4+a^4-ca^3-c^3a)\geq 0$

$\Leftrightarrow (a-b)^2(a^2+ab+b^2)+(b-c)^2(b^2+bc+c^2)+(c-a)^2(c^2+ca+a^2)\geq 0$

Điều này luôn đúng do:

$(a-b)^2\geq 0; a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0$ với mọi $a,b\in\mathbb{R}$ và tương tự với 2 đa thức còn lại)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$ 

30 tháng 9 2021

Do bđt đối xứng nên ta giả sử: \(a\ge b\ge c\)

Áp dụng Chebyshev cho hai dãy đơn điệu tăng (a;b;c) và(a^3;b^3;c^3):

\(a^4+b^4+c^4=a.a^3+b.b^3+c.^3\ge\dfrac{1}{3}\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)