K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

a) giả sử \(a^2+b^2\ge2ab\)

=> \(a^2+b^2-2ab\ge0\)

=> \(\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b)

vậy điều giả sử là đúng

b) áp dụng BĐT ở phần a ta được \(\frac{a^2+b^2}{2}\ge\frac{2ab}{2}=ab\)

12 tháng 3 2016

a) Vì, ta có:

\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)(dpcm)

b) tu cau a, ta có:

 \(a^2+b^2\ge2ab\Rightarrow\frac{a^2+b^2}{2}\ge ab\)(dpcm)

Dấu bằng xảy ra khi và chỉ khi a+b.

20 tháng 3 2023

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

19 tháng 5 2019

\(\frac{a^2+b^2}{2}\ge ab\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Luôn đúng với mọi a và b

19 tháng 5 2019

Ta có:

     \(\left(a-b\right)^2\ge0\)

       <=>\(\left(a-b\right)\cdot\left(a-b\right)\ge0\)

       <=>\(\left(a^2-2ab+b^2\right)\ge0\)

       <=>\(\left(a^2+b^2\right)\ge2ab\)

       <=>\(\frac{a^2+b^2}{2}\ge ab\)(đpcm)

Vậy với 2 số a,b bất kì ta có \(\frac{a^2+b^2}{2}\ge ab\)

27 tháng 4 2022

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

30 tháng 7 2018

Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0

⇒  a 2 + b 2 - 2 a b + 2 a b ≥ 2 a b  ⇒  a 2 + b 2 ≥ 2 a b

⇒  a 2 + b 2 . 1 / 2 ≥ 2 a b . 1 / 2   ⇒   a 2 + b 2 / 2 ≥ a b

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

12 tháng 3 2016

a) sai đề

12 tháng 3 2016

Đề câu a thiếu rồi bạn.

Câu b ta áp dụng bất đẳng thức cô- si ra (a/b) + (b/a) lớn hơn hoặc bằng 2.căn của (a/b).(b/a).=> đpcm

31 tháng 5 2019

Chừa 1 suất cho mik.  7h mik về

31 tháng 5 2019

Làm đại luôn mặc dù chưa xong xD. Có sai sót gì cho xin lỗi nha!

Đặt: \(M=\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\)

\(M=\frac{\frac{1}{\left(b+c\right)^2}}{\frac{1}{a^2+bc}}+\frac{\frac{1}{\left(c+a\right)^2}}{\frac{1}{b^2+ca}}+\frac{\frac{1}{\left(a+b\right)^2}}{\frac{1}{c^2+ab}}\)

Áp dụng Bđt AM-GM dạng Engel:

\(M\ge\frac{\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2}{\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}}\)

Chuẩn hóa: \(a+b+c=3\)

Có: \(A=\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2\ge\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\left(\frac{3}{2}\right)^2\)

CM:\(B=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{3}{2}\)so what ? Tới đây k biết làm. 

19 tháng 3 2016

a) giả sử a^2-ab+b^2>/ab

<=> a^2-ab+b^2-ab>/0

<=> a^2-2ab+b^2>/0

<=> (a-b)^2>/0 (đúng với mọi a,b)

vậy a^2-ab+b^2>/ab

b) giả sử (a+b)^2.(a-b)^2>/4ab(a-b)^2

<=> (a+b)^2(a-b)^2-4ab(a-b)^2>/0

<=> (a-b)^2(a^2+2ab+b^2-4ab)>/0

<=> (a-b)^2(a-b)^2>/0

<=> (a-b)^4>/0 (đúng với mọi a,b)

vậy (a+b)^2(a-b)^2>/4ab(a-b)^2