K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

Áp dụng BĐT BSC:

\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(=\dfrac{b\left(a+b\right)-b^2}{a+b}+\dfrac{c\left(b+c\right)-c^2}{b+c}+\dfrac{a\left(c+a\right)-a^2}{c+a}\)

\(=a+b+c-\left(\dfrac{a^2}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+a}\right)\)

\(\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

2 tháng 3 2021

4ab ≤ (a + b)2 ⇒ \(\dfrac{4ab}{a+b}\le a+b\)

Tương tự \(\dfrac{4ac}{a+c}\le a+c\) ; \(\dfrac{4bc}{b+c}\le b+c\)

⇒ Cộng lại vế với vế :

4VT ≤ 2 (a+b+c) ⇒ VT ≤ \(\dfrac{a+b+c}{2}\)

9 tháng 8 2017

Đặt \(T=\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)

\(BDT\Leftrightarrow\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2+bc}{b+c}-a+\dfrac{b^2+ca}{c+a}-b+\dfrac{c^2+ab}{a+b}-c\ge0\)

\(\Leftrightarrow\dfrac{a^2+bc-ab-ac}{b+c}+\dfrac{b^2+ac-ab-bc}{a+c}+\dfrac{c^2+ab-ac-bc}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{b+c}+\dfrac{\left(b-a\right)\left(b-c\right)}{a+c}+\dfrac{\left(c-a\right)\left(c-b\right)}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{T}\ge0\)

\(\Leftrightarrow\dfrac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{T}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2T}\ge0\)

Xảy ra khi \(a=b=c\)

10 tháng 8 2017

\(BĐT\Leftrightarrow\sum\left(\dfrac{1}{a}-\dfrac{b+c}{a^2+bc}\right)\ge0\)

\(\Leftrightarrow\sum\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\)

Giả sử \(a\ge b\ge c\)thì

\(\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\).vậy nên chỉ cần chứng minh

\(\dfrac{\left(b-c\right)\left(b-a\right)}{b\left(b^2+ac\right)}+\dfrac{\left(c-a\right)\left(c-b\right)}{c\left(c^2+ab\right)}\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\dfrac{b-a}{b\left(b^2+ac\right)}+\dfrac{a-c}{c\left(c^2+ab\right)}\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\left(b-a\right)\left(c^3+abc\right)+\left(a-c\right)\left(b^3+abc\right)\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)^2\left(b+c\right)\left(ab+ac-bc\right)\ge0\)( đúng vì \(a\ge b\ge c\))

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c

AH
Akai Haruma
Giáo viên
1 tháng 3 2022

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{b+c}{a^2+bc}=\frac{(b+c)^2}{(b+c)(a^2+bc)}=\frac{(b+c)^2}{b(a^2+c^2)+c(a^2+b^2)}\leq \frac{c^2}{b(a^2+c^2)}+\frac{b^2}{c(a^2+b^2)}\)

Tương tự với các phân thức còn lại:

$\frac{c+a}{b^2+ca}\leq \frac{c^2}{b(a^2+c^2)}+\frac{a^2}{c(a^2+b^2)}$

$\frac{a+b}{c^2+ab}\leq \frac{a^2}{b(a^2+c^2)}+\frac{b^2}{c(a^2+b^2)}$

Cộng theo vế và thu gọn suy ra:

$\text{VT}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 3 2022

Dấu "=" xảy ra khi a=b=c

4 tháng 4 2017

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3\ge ab+bc+ca\)

\(\Rightarrow\left\{{}\begin{matrix}3+a^2\ge\left(a+c\right)\left(a+b\right)\\3+b^2\ge\left(a+b\right)\left(b+c\right)\\3+c^2\ge\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{\sqrt{3+a^2}}\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\\\dfrac{ca}{\sqrt{3+b^2}}\le\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\\\dfrac{ab}{\sqrt{3+c^2}}\le\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}+\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\Leftrightarrow VT\le\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}\le\dfrac{\dfrac{bc}{a+c}+\dfrac{bc}{a+b}}{2}\\\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{ab}{a+c}+\dfrac{ab}{b+c}}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)+\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)}{2}\)

\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\) (2)

Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(\Leftrightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) (3)

Từ (1) , (2) , (3)

\(\Rightarrow VT\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(\Leftrightarrow\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{\sqrt{b^2+3}}+\dfrac{ab}{\sqrt{c^2+3}}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c=1\)

10 tháng 8 2017

\(BĐT\Leftrightarrow\sum\dfrac{2bc}{1+a^2}\le\dfrac{3}{2}\Leftrightarrow\sum\dfrac{-2bc}{2a^2+b^2+c^2}\ge-\dfrac{3}{2}\)

\(\Leftrightarrow\sum\dfrac{2a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}\ge\dfrac{3}{2}\)

ÁP dụng BĐT cauchy-schwarz:

\(\sum\dfrac{2a^2}{2a^2+b^2+c^2}\ge\dfrac{2\left(a+b+c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)

\(\sum\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}=\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(a-c\right)^2}{2b^2+a^2+c^2}\ge\dfrac{4\left(a-c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a-c\right)^2}{a^2+b^2+c^2}\)

( Lưu ý : \(\left(c-a\right)^2=\left(a-c\right)^2\)) (1)

Do vậy cần chứng minh \(\dfrac{\left(a+b+c\right)^2+2\left(a-c\right)^2}{2\left(a^2+b^2+c^2\right)}\ge\dfrac{3}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)^2+4\left(a-c\right)^2\ge6\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow ab+bc-ac-b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\) (*)

(*) không phải luôn đúng, tuy nhiên ta có thể ép cho nó đúng .

bằng cách đáng giá tương tự BĐT (1) :

\(\left\{{}\begin{matrix}\dfrac{\left(b-a\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(b-a\right)^2}{a^2+b^2+c^2}\\\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(c-b\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(c-b\right)^2}{a^2+b^2+c^2}\end{matrix}\right.\)

ta thu được BĐT cần chứng minh tương đương \(\left\{{}\begin{matrix}\left(b-c\right)\left(c-a\right)\ge0\left(3\right)\\\left(c-a\right)\left(a-b\right)\ge0\left(4\right)\end{matrix}\right.\)

Dễ thấy \(\left(a-b\right)\left(b-c\right).\left(b-c\right)\left(c-a\right).\left(c-a\right)\left(a-b\right)=\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\ge0\)

tích của chúng là 1 số không âm nên có ít nhất 1 số không âm .Chứng tỏ có ít nhất 1 BĐT đúng

Do đó ta có đpcm

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

6 tháng 3 2021

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

NV
6 tháng 3 2021

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Ta có:

\(\frac{a}{a+bc}=\frac{a}{a(a+b+c)+bc}=\frac{a}{(a+b)(a+c)}\)

Thực hiện tương tự với các phân thức còn lại thu được:

\(\text{VT}=\frac{a(b+c)+b(a+c)+c(a+b)}{(a+b)(b+c)(c+a)}=\frac{2(ab+bc+ac)}{(a+b)(b+c)(c+a)}\) \((1)\)

Ta để ý bổ đề sau:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)

Chứng minh:

\(\prod(a+b)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\text{VP}\)

Áp dụng vào bài toán:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(ab+bc+ac)\) \((2)\)

Từ \((1),(2)\Rightarrow \text{VT}\leq \frac{9}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

16 tháng 2 2022

Bất đẳng thức cần chứng minh tương đương với:

\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)

Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:

\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức

\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)

Khi đó ta cần chứng minh: 

\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)

Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)

Khi đó đẳng thức trên được viết lại thành:

\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)

Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)

Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

16 tháng 2 2022

Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)

Khi đó bđt đã tro chở thành:

\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)

 

NV
8 tháng 4 2021

\(\Leftrightarrow\left(1+ab+bc+ca\right)\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

Áp dụng BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{8}{9}\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\)

Ta chỉ cần chứng minh:

\(\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow4\left(ab+bc+ca\right)^2\ge9abc+9abc\left(ab+bc+ca\right)\)

Do \(3\left(ab+bc+ca\right)^2\ge9abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(ab+bc+ca\right)^2\ge9abc\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

Hiển nhiên đúng do \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)