K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2023

Ta có \(p=x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=2\). Ta đi tìm GTNN của \(B=p+\dfrac{1}{p}\).

Do \(B=\dfrac{p}{4}+\dfrac{1}{p}+\dfrac{3p}{4}\) \(\ge2\sqrt{\dfrac{p}{4}.\dfrac{1}{p}}+\dfrac{3.2}{4}\) \(=\dfrac{5}{2}\). ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\p=2\end{matrix}\right.\) \(\Leftrightarrow x=y=1\).

Vậy GTNN của B là \(\dfrac{5}{2}\) khi \(x=y=1\)

18 tháng 5 2021

120

18 tháng 5 2021

\(10x^2+\frac{1}{x^2}+\frac{y^2}{4}=20\)

\(=>\left(x^2+\frac{1}{x^2}\right)+\left(9x^2+\frac{y^2}{4}\right)=20\)

\(=>\left(x+\frac{1}{x}\right)^2+\left(3x+\frac{y}{2}\right)^2=20\)

Ta có \(x+\frac{1}{x}\ge2\sqrt{\frac{x.1}{x}}\ge2\)dấu = xảy ra khi x=1

=> y=6 

=> MinP=6

Mình nghxi zậy

8 tháng 6 2023

\(\dfrac{1}{x}+\dfrac{2}{y}\le1\Rightarrow\dfrac{2}{y}\le1-\dfrac{1}{x}\Rightarrow y\ge\dfrac{2x}{x-1}=2+\dfrac{2}{x-1}\)

\(x+\dfrac{2}{z}\le3\Rightarrow x< 3;\dfrac{2}{z}\le3-x\Rightarrow z\ge\dfrac{2}{3-x}\Rightarrow y+z\ge2+\dfrac{2}{x-1}+\dfrac{2}{3-x}\)

Lúc này ta sẽ áp dụng bất đẳng thức Bunhiacopski

Ta có:

\(6^2\le\left(y+z\right)^2=\left(\sqrt{2}\dfrac{y}{\sqrt{2}}Z\right)^2\le3\left(\dfrac{y^2}{2}+z^2\right)=\dfrac{3}{2}\left(y^2+2z^2\right)\)

\(\Rightarrow P\ge24\). Dấu đẳng thức xảy ra khi và chỉ khi \(y=4,z=2\) 

Vậy giá trị nhỏ nhật của P là 24

17 tháng 10 2023

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)

\(\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{4.\dfrac{\left(x+y\right)^2}{4}}\)

\(\ge\dfrac{4}{1^2}+2+\dfrac{5}{1^2}\) (do \(x+y\le1\))

\(=11\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy GTNN của A là 11.

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Ta có: $A=x^2+\frac{1}{y(x-y)}$. Đặt $x-y=a$ với $a>0$ thì áp dụng BĐT AM-GM ta có:

$A=(a+y)^2+\frac{1}{ay}\geq 4ay+\frac{1}{ay}\geq 2\sqrt{4ay.\frac{1}{ay}}=4$

Vậy $A_{\min}=4$ khi $x=\sqrt{2}; y=\frac{1}{\sqrt{2}}$

11 tháng 3 2020

Làm tiếp ạ

\(\Rightarrow P\ge\frac{289}{16}\)

Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy MIN P=\(\frac{289}{16}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

11 tháng 3 2020

Em chả có cách gì ngoài cô si mù mịt :v

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=\left(x^2+\frac{1}{16y^2}+\frac{1}{16y^2}+.....+\frac{1}{16y^2}\right)\left(y^2+\frac{1}{16x^2}+\frac{1}{16x^2}+.....+\frac{1}{16x^2}\right)\)

\(\ge17\sqrt[17]{\frac{x^2}{16^{16}\cdot y^{32}}}\cdot17\sqrt[17]{\frac{y^2}{16^{16}\cdot x^{32}}}\)

\(=17^2\sqrt[17]{\frac{x^2y^2}{16^{32}\cdot x^{32}\cdot y^{32}}}\)

\(=17^2\sqrt[17]{\frac{1}{16^{32}\cdot\left(xy\right)^{30}}}\)

\(\ge17^2\sqrt[17]{\frac{1}{16^{32}\left(\frac{x+y}{2}\right)^{60}}}=\frac{289}{16}\)

Dấu "=" xảy ra tại x=y=1/2

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều

 

NV
15 tháng 4 2021

\(A=\dfrac{2x^2}{2x+2yz}+\dfrac{2y^2}{2y+2zx}+\dfrac{2z^2}{2z+2xy}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

\(A\ge\dfrac{2x^2}{x^2+1+y^2+z^2}+\dfrac{2y^2}{y^2+1+z^2+x^2}+\dfrac{2z^2}{z^2+1+x^2+y^2}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

\(A\ge\dfrac{2\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+1}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)

Đặt \(x^2+y^2+z^2=a>0\)

\(\Rightarrow A\ge\dfrac{2a}{a+1}+\dfrac{9}{8a}=\dfrac{2a}{a+1}+\dfrac{9}{8a}-\dfrac{15}{8}+\dfrac{15}{8}\)

\(\Rightarrow A\ge\dfrac{\left(a-3\right)^2}{8a\left(a+1\right)}+\dfrac{15}{8}\ge\dfrac{15}{8}\)

\(A_{min}=\dfrac{15}{8}\) khi \(a=3\) hay \(x=y=z=1\)

15 tháng 4 2021

Chỉ em phương pháp múa cột trong tính nguyên hàm với ạ