K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

Dat \(\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)=\left(x;y;z\right)\)

\(\Rightarrow xyz=1\)

\(\Sigma_{cyc}\frac{1}{\frac{a}{b}+\frac{c}{a}+1}=\Sigma_{cyc}\frac{1}{x+y+1}\)

We need to prove:

\(\Sigma_{cyc}\frac{1}{x+y+1}\le1\)

\(\Leftrightarrow\Sigma_{cyc}\frac{x+y}{x+y+1}\ge2\left(M\right)\)

We have:

\(VT_M\ge\frac{\left(\Sigma_{cyc}\sqrt{x+y}\right)^2}{2\Sigma_{cyc}x+3}\)

Now we need to prove

\(\frac{\left(\Sigma_{cyc}\sqrt{x+y}\right)^2}{2\Sigma_{cyc}x+3}\ge2\)

\(\Leftrightarrow\Sigma_{cyc}\sqrt{\left(x+y\right)\left(y+z\right)}\ge\Sigma_{cyc}x+3\left(M_1\right)\)

Consider:

\(VT_{M_1}=\sqrt{\left(x+y\right)\left(y+z\right)}\ge x+y+z+xy+yz+zx\)

Now we need to prove:

\(x+y+z+xy+yz+zx\ge x+y+z+3\)

\(xy+yz+zx\ge3\) (Not fail with xyz=1)

Dau '=' xay ra khi \(\hept{\begin{cases}a=b=c=1\\x=y=z=1\end{cases}}\)

5 tháng 1 2020

Mấy cái kí hiệu kia là gì v bạn 

25 tháng 5 2018

\(c+ab=\left(a+b+c\right)c+ab=ac+cb+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)

\(P=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

áp dụng bất đẳng tức cauchy :

\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

cộng vế theo vế 

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}\cdot3=\frac{3}{2}\)

dấu "=" xảy ra khi a=b=c=1/3

24 tháng 8 2020

Có a+b+c=1 => c=(a+b+c).c=ac+bc+c2

\(\Rightarrow c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(b+c\right)\left(a+c\right)\)

\(\Rightarrow\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{\frac{a}{c+b}+\frac{b}{c+b}}{2}\)

Tương tự ta có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ac=\left(b+a\right)\left(b+c\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\end{cases}}}\)

\(\Rightarrow P\le\frac{\frac{b}{a+b}+\frac{c}{c+a}+\frac{c}{b+c}+\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{c+b}}{2}\)\(=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 1 2020

tham khảo

https://olm.vn/hoi-dap/detail/106887527253.html

4 tháng 6 2018

Bạn CM \(a^5+b^5\ge ab\left(a^3+b^3\right)\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{a^3+b^3+abc}\)

Tiếp tục \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{c}{a+b+c}\)

Tương tự cộng lại suy ra \(VT\le1\)

Dấu = xảy ra khi a=b=c=1

4 tháng 6 2018

Mỉnh cảm ơn nha 

23 tháng 1 2017

i don't no TT

mình chưa học tới 

31 tháng 10 2018

\(A=\frac{ab}{a+c+b+c}+\frac{bc}{a+b+a+c}+\frac{ca}{a+b+b+c}\)

\(\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Nên max A là \(\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)

NV
12 tháng 8 2020

BĐT Cô-si:

\(\sqrt{xy}\le\frac{1}{2}\left(x+y\right)\)

Bạn tách căn kia ra là nhìn thấy vấn đề:

\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}=\sqrt{\left(\frac{a}{a+c}\right)\left(\frac{b}{b+c}\right)}\)

12 tháng 8 2020

Bạn giải thích giúp mình chỗ \(\le\frac{1}{2}\) với ạ

13 tháng 6 2016

Cách 1:

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự với \(\sqrt{\frac{bc}{a+bc}},\sqrt{\frac{ca}{b+ca}}\)rồi cộng các vế lại với nhau ta sẽ có

\(P\le\frac{3}{2}\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Vậy....

13 tháng 6 2016

Trả lời đi huhu