K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 11 2020

\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\right]=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự với \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\).

Suy ra \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\).

(Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với \(a,b>0\), dấu \(=\)khi \(a=b\))

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

** Bạn lưu ý lần sau viết đề bằng công thức toán!

Đề cần sửa thành $\leq \frac{4}{3}$

Lời giải:

Áp dụng BĐT AM-GM và Cauchy-Schwarz:

\(\frac{1}{2x^2+y^2+z^2}=\frac{1}{(x^2+z^2)+(x^2+y^2)}\leq \frac{1}{2xy+2xz}=\frac{1}{2}.\frac{1}{xy+xz}\leq \frac{1}{8}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(\sum \frac{1}{2x^2+y^2+z^2}\leq \frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\frac{x+y+z}{4xyz}\) $(1)$

Mặt khác:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\Rightarrow 4xyz=xy+yz+xz$

$\Rightarrow 16x^2y^2z^2=(xy+yz+xz)^2\geq 3xyz(x+y+z)$ (theo BĐT AM-GM)

$\Rightarrow x+y+z\leq \frac{16}{3}xyz (2)$

Từ $(1);(2)\Rightarrow \sum \frac{1}{2x^2+y^2+z^2}\leq \frac{4}{3}$ 

Dấu "=" xảy ra khi $x=y=z=\frac{3}{4}$

NV
7 tháng 3 2021

\(\dfrac{1}{2x^2+y^2+z^2}=\dfrac{1}{x^2+y^2+x^2+z^2}\le\dfrac{1}{2xy+2xz}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{xz}\right)\)

Tương tự: \(\dfrac{1}{x^2+2y^2+z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{yz}\right)\) ; \(\dfrac{1}{x^2+y^2+2z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xz}+\dfrac{1}{yz}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)\le\dfrac{1}{4}.\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=\dfrac{4}{3}\)

Đề bài sai

7 tháng 3 2021

Áp dụng bđt phụ \(\dfrac{1}{A+B}\le\dfrac{1}{4}\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\forall A,B>0\)

\(\dfrac{1}{2x+y+z}=\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\) Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=1\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{4}\)

7 tháng 3 2021

Này Nguyễn Trọng Chiến, mk ko hiểu cái chỗ \(\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\)??? Sao suy ra được vậy bn??

NV
7 tháng 3 2021

\(\dfrac{1}{x+x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{3}{4}\)

7 tháng 3 2021

Mk ko hiểu cái dòng đầu Nguyễn Việt Lâm Giáo viên, bn có thể nói chi tiết cách phân tích cho mk đc ko??

27 tháng 2 2020

Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )

Áp dụng vào bài toán ta có :

\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)

                                                           \(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

Tương tự ta có :

\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)

27 tháng 2 2020

Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

                  \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

21 tháng 3 2021

\(A=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

\(=\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{4}{4}=1\)

10 tháng 12 2017

bạn ơi hình như có chút sai đề

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

13 tháng 3 2021

Thầy ơi, nhưng câu này là đề thi huyện chỗ em á thầy, em cũng chả biết làm sao nữa, chả nhẽ đề thi huyện lại sai:"(