K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 4 2019

\(P=\sum\frac{a^3}{\sqrt{1+b^2}}=\sum\frac{\sqrt{2}a^4}{\sqrt{2}a\sqrt{1+b^2}}\ge\sum\frac{2\sqrt{2}a^4}{2a^2+b^2+1}\ge\frac{2\sqrt{2}\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2\right)+3}=\frac{3\sqrt{2}}{2}\)

\(\Rightarrow P_{min}=\frac{3\sqrt{2}}{2}\) khi \(a=b=c=1\)

5 tháng 12 2019

\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{8}\ge\frac{3}{2}a^2\)\(\Leftrightarrow\)\(\frac{a^3}{\sqrt{b^2+3}}\ge\frac{3}{4}a^2-\frac{1}{16}b^2-\frac{3}{16}\)

\(P=\Sigma\frac{a^3}{\sqrt{b^2+3}}\ge\frac{3}{4}\left(a^2+b^2+c^2\right)-\frac{1}{16}\left(a^2+b^2+c^2\right)-\frac{9}{16}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1 

5 tháng 12 2019

different way

Ta co:

\(\text{ }P=\Sigma_{cyc}\frac{a^3}{\sqrt{b^2+3}}\ge\Sigma_{cyc}\frac{\left(a^2+b^2+c^2\right)^2}{\Sigma_{cyc}a\sqrt{b^2+3}}\ge\frac{9}{\sqrt{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+9\right)}}=\frac{3}{2}\)

Dau '=' xay ra khi \(a=b=c=1\)

NV
2 tháng 1 2020

\(P=\frac{2a^4}{2a\sqrt{b^2+3}}+\frac{2b^4}{2b\sqrt{c^2+3}}+\frac{2c^4}{2c\sqrt{a^2+3}}\)

\(\Rightarrow P\ge\frac{4a^4}{4a^2+b^2+3}+\frac{4b^4}{4b^2+c^2+3}+\frac{4c^4}{4c^2+a^2+3}\)

\(\Rightarrow P\ge\frac{4\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)+9}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

19 tháng 3 2017

\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)

\(P=\dfrac{a^4}{\sqrt{a^2\left(b^2+3\right)}}+\dfrac{b^4}{\sqrt{b^2\left(c^2+3\right)}}+\dfrac{c^4}{\sqrt{c^2\left(a^2+3\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a^2\left(b^2+3\right)}\le\dfrac{a^2+b^2+3}{2}\\\sqrt{b^2\left(c^2+3\right)}\le\dfrac{b^2+c^2+3}{2}\\\sqrt{c^2\left(a^2+3\right)}\le\dfrac{c^2+a^2+3}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}\le\dfrac{2\left(a^2+b^2+c^2\right)+3}{2}=\dfrac{9}{2}\)

\(\Rightarrow\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\ge\dfrac{2\left(a^2+b^2+c^2\right)^2}{9}=2\)

\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sqrt{a^2\left(b^2+3\right)}+\sqrt{b^2\left(c^2+3\right)}+\sqrt{c^2\left(a^2+3\right)}}\)

\(\Rightarrow VT\ge2\)

\(\Leftrightarrow\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\ge2\)

\(\Leftrightarrow P\ge2\)

Vậy \(P_{min}=2\)

23 tháng 5 2016

đặt  (với a, b, c > 0). Khi đó phương trình đã cho trở thành:

a = b = c = 2
Suy ra: x = 2013, y = 2014, z = 2015.

NV
16 tháng 6 2020

\(A=1-cos^2x+2cosx+1=3-\left(cosx-1\right)^2\le3\)

\(A_{max}=3\) khi \(cosx=1\)

\(B=1-sin^2x-2sin^2x-3=-1-\left(sinx+1\right)^2\le-1\)

\(B_{max}=-1\) khi \(sinx=-1\)

\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{4}-1\right)}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)

\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{8}-1\right)}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)

\(B=\sqrt{2+\sqrt{2+\sqrt{2+2\left(2cos^2\frac{a}{2}-1\right)}}}\)

\(=\sqrt{2+\sqrt{2+\sqrt{4cos^2\frac{a}{2}}}}=\sqrt{2+\sqrt{2+2cos\frac{a}{2}}}\)

\(=\sqrt{2+\sqrt{2+2\left(cos^2\frac{a}{4}-1\right)}}=\sqrt{2+\sqrt{4cos^2\frac{a}{4}}}\)

\(=\sqrt{2+2cos\frac{a}{4}}=\sqrt{2+2\left(2cos^2\frac{a}{8}-1\right)}=2cos\frac{a}{8}\)

16 tháng 2 2020

Áp dụng BĐT AM - GM ta có:

\(4\sqrt{ab}=2\sqrt{a.4b}\le a+4b\)

\(4\sqrt{bc}=2\sqrt{b.4c}\le b+4c\)

\(4\sqrt[3]{abc}=\sqrt[3]{a.4b.16c}\le\frac{a+4b+16c}{3}\)

Cộng theo vế 3 BĐT ta được:

\(8a+3b+4\left(\sqrt{ab}+\sqrt{bc}+\sqrt[3]{abc}\right)\le\frac{28}{3}\left(a+b+c\right)\)

\(\Rightarrow P\le\frac{28\left(a+b+c\right)}{3+3\left(a+b+c\right)^2}=\frac{14}{3}-\frac{14\left(a+b+c-1\right)^2}{3\left[\left(a+b+c\right)^2+1\right]}\le\frac{14}{3}\)

\(\Rightarrow Max_P=\frac{14}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow a+b+c=1\)và \(a=4b=16c\)

\(\Leftrightarrow a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 2:

Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)

Mà theo BĐT AM-GM và Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)

\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)

Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH