K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

a3+b3+c3 - 3abc >= 0 

<=>(a+b+c)(a2+b2+c2-ab-bc-ca) >= 0 

bn tự c/m ngoặc thứ 2 >= 0 (nhân 2 vào),có a+b+c >= 0 ->đpcm

25 tháng 9 2016

Áp dụng Bđt Cô si 3 số dương ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Đẳng thức xảy ra khi \(a=b=c\)

Đpcm

9 tháng 7 2018

Áp dụng bđt cô si dạng engel cho 3 số dương:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Vậy đẳng thức chỉ xảy ra khi a = b = c

Chúc bạn học tốt!

9 tháng 7 2018

Câu hỏi của Pé Ken - Toán lớp 8 - Học toán với OnlineMath tham khảo

25 tháng 2 2020

C1 : Áp dụng BĐT Cô - si cho 3 số không âm ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : Sử dụng biến đổi tương đương :

Ta có :\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) ( luôn đúng )

Do đó có : \(a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

25 tháng 2 2020

Xét hiệu \(a^3+b^3+c^3-3abc\) ta có:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)

Vì \(a,b,c\ge0\)\(\Rightarrow a+b+c\ge0\)

mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)

hay \(a^3+b^3+c^3-3abc\ge0\)\(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b=c=0\\a=b=c\end{cases}}\)\(\Leftrightarrow a=b=c\ge0\)

9 tháng 4 2019

\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\ge0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)

Bài thiếu điều kiện \(a+b+c\ge0\)

Dễ dàng chứng minh \(a^2+b^2+c^2-ab-ac-bc\ge0\)nên ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c=0\end{cases}}\)

10 tháng 4 2019

Cách này có được không ta?

Đặt \(\left(a^3;b^3;c^3\right)\rightarrow\left(x;y;z\right)\) và thêm đk a,b,c>0

Chuẩn hóa x + y + z = 1 (*) thì ta cần chứng minh:

\(1\ge3\sqrt{xyz}\Leftrightarrow f\left(x;y;z\right)=1-27xyz\ge0\)

Ta nhận thấy nếu thay x và y bởi \(t=\frac{\left(x+y\right)}{2}\) thì (*) vẫn thỏa mãn.

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=t^2\)

Suy ra \(f\left(x;y;z\right)\ge1-27t^2z=f\left(t;t;z\right)\)

Thay x;y bởi \(t=\frac{\left(x+y\right)}{2}\) vào (*) suy ra được: \(z=1-2t\)

Khi đó ta cần chứng minh: \(f\left(t;t;z\right)=1-27t^2\left(1-2t\right)\ge0\)

\(\Leftrightarrow54t^3-27t^2+1\ge0\Leftrightarrow\left(6t+1\right)\left(3t-1\right)^2\ge0\) (đpcm)

Dấu "=" xảy ra khi x = y và t = 1/3 tương đương với x = y =z =1/3

Tương đương với x = y =z (do đầu bài ta chuẩn hóa x + y + z = 1)

Tức là a = b =c

11 tháng 5 2017

\(\dfrac{a^3-b^3}{ab^2}+\dfrac{b^3-c^3}{bc^2}+\dfrac{c^3-a^3}{ca^2}\ge0\)

\(\Leftrightarrow\dfrac{a^2}{b^2}-\dfrac{b}{a}+\dfrac{b^2}{c^2}-\dfrac{c}{b}+\dfrac{c^2}{a^2}-\dfrac{a}{c}\ge0\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge\dfrac{2a}{c}\\\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2b}{a}\\\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge\dfrac{2c}{b}\end{matrix}\right.\)

Cộng 3 cái vế theo vế rồi rút gọn cho 2 ta được ĐPCM

12 tháng 5 2017

thanks nhiều:))

16 tháng 5 2020

BĐT tương đương với :

\(3a^4+3b^4+3c^4-\left(a^4+a^3b+a^3c+b^4+ab^3+b^3c+ac^3+bc^3+c^4\right)\ge0\)

\(\Leftrightarrow\left(a^4+b^4-a^3b-ab^3\right)+\left(b^4+c^4-b^3c-bc^3\right)+\left(a^4+c^4-a^3c-ac^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)+\left(b-c\right)^2\left(b^2+bc+c^2\right)+\left(a-c\right)^2\left(a^2+ac+c^2\right)\ge0\)

28 tháng 5 2020

BĐT cần chứng minh tương đương với:

\(3a^4+3b^4+3c^4\ge a^4+b^4+c^4+ab^3+bc^3+ca^3+a^3b+b^3c+c^3a\)

\(\Leftrightarrow2a^4+2b^4+2c^4-ab^3-bc^3-ca^3-a^3b-b^3c-c^3a\ge0\)

Theo AM - GM ta dễ có:

\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)

\(b^4+b^4+b^4+c^4\ge4\sqrt[4]{b^{12}c^4}=4b^3c\)

\(c^4+c^4+c^4+a^4\ge4\sqrt[4]{c^{12}a^4}=4c^3a\)

Cộng vế theo vế ta có đpcm

6 tháng 8 2019

\(\frac{a^3}{b\left(b+c\right)}+\frac{b}{2}+\frac{b+c}{4}\ge3\sqrt[3]{\frac{a^3}{b\left(b+c\right)}.\frac{b}{2}.\frac{b+c}{4}}=\frac{3}{2}a\)

\(\Leftrightarrow\)\(\frac{a^3}{b\left(b+c\right)}\ge\frac{3}{2}a-\frac{1}{2}b-\frac{1}{4}\left(b+c\right)=\frac{3}{2}a-\frac{3}{4}b-\frac{1}{4}c\)

Tương tự, ta có: \(\frac{b^3}{c\left(c+a\right)}\ge\frac{3}{2}b-\frac{3}{4}c-\frac{1}{4}a;\frac{c^3}{a\left(a+b\right)}\ge\frac{3}{2}c-\frac{3}{4}a-\frac{1}{4}b\)

Cộng theo vế 3 bđt ta được đpcm 

CMR:a3+b3+c3\(\ge\)3abc với a,b,c>0

+)Áp dụng bất đẳng thức Cô-Si của ba số nguyên dương ta có:

a3+b3+c3\(\ge\)\(\sqrt[3^3]{a^3b^3c^3}\)

Mà \(\sqrt[3^3]{a^3b^3c^3}\)=3abc

=>a3+b3+c3\(\ge\)3abc

Bất đẳng thức xảy ra khi a=b=c(ĐPCM)

Chúc bn học tốt

6 tháng 2 2020

C1 : Áp dụng BĐT Cô si cho ba số dương \(a^3,b^3,c^3\) ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\) 

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : ta xét hiệu : \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) (1)

Ta thấy \(\left(1\right)\ge0\) \(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

9 tháng 6 2017

đăng 2 lần ở 2 web làm gì rồi COPIER lại đào lên nhai lại