K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Theo C.B.S thì

\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)

\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)

Lại theo CBS thì

\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}=9\)\(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)

\(\Rightarrow\)\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+bc+ac}\)\(\)\(\ge21+9=30\)

vậy Min = 30 khi a = b = c = 1/3

19 tháng 1 2023

\(ab+bc+ca\le1\)

\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)

\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)

\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)

NV
15 tháng 1 2021

\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)

Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)

Cộng vế với vế:

\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

NV
22 tháng 1

\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z>0\\x+y+z=3\end{matrix}\right.\)

\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}\)

Ta có đánh giá sau: \(\dfrac{t}{\left(3-t\right)^2}\ge\dfrac{2t-1}{4};\forall t\in\left(0;3\right)\)

Thực vậy, BĐT đã cho tương đương:

\(4t\ge\left(2t-1\right)\left(3-t\right)^2\)

\(\Leftrightarrow-2t^3+13t^2-20t+9\ge0\)

\(\Leftrightarrow\left(9-2t\right)\left(t-1\right)^2\ge0\) (luôn đúng với \(t< 3\))

Áp dụng ta được:

\(P\ge\dfrac{2x-1}{4}+\dfrac{2y-1}{4}+\dfrac{2z-1}{4}=\dfrac{2\left(x+y+z\right)-3}{4}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
22 tháng 1

Cách khác:

Sau khi đặt ẩn phụ, ta có:

\(P=\dfrac{x}{\left(3-x\right)^2}+\dfrac{y}{\left(3-y\right)^2}+\dfrac{z}{\left(3-z\right)^2}=\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\)

\(\Rightarrow3P=\left(x+y+z\right)\left(\dfrac{x}{\left(y+z\right)^2}+\dfrac{y}{\left(z+x\right)^2}+\dfrac{z}{\left(x+y\right)^2}\right)\ge\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)^2\ge\dfrac{9}{4}\)

(BĐT Netsbitt)

\(\Rightarrow P\ge\dfrac{3}{4}\)

12 tháng 1 2022

cái cuối là \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\)  nha

NV
14 tháng 1 2022

\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
29 tháng 3 2023

\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 4 2021

Lời giải:

Xét:

$\frac{a}{a^2+1}-\left(\frac{16}{25}-\frac{3}{25}a\right)=\frac{(a-2)^2(3a-4)}{25(a^2+1)}\geq 0$ với mọi $a\geq \frac{4}{3}$

$\Rightarrow \frac{a}{a^2+1}\geq \frac{16}{25}-\frac{3}{25}a$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:

$A\geq \frac{48}{25}-\frac{3}{25}(a+b+c)=\frac{6}{5}$

Vậy $A_{\min}=\frac{6}{5}$.

Giá trị này đạt tại $a=b=c=2$

 

có cách nào không gượng ép như thế này không ạ

kiểu như phân tích chọn điểm rơi để tìm cách thêm bớt ấy ạ

24 tháng 6 2021

Đặt A = \(\dfrac{a-b}{1+c^2}+\dfrac{b-c}{1+a^2}+\dfrac{c-a}{1+b^2}=0\)

\(\dfrac{a-b}{c^2+ab+bc+ca}+\dfrac{b-c}{a^2+ab+bc+ca}+\dfrac{c-a}{b^2+ab+bc+ca}\)

\(\dfrac{a-b}{\left(c+a\right)\left(c+b\right)}+\dfrac{b-c}{\left(a+b\right)\left(c+a\right)}+\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}\)

\(\dfrac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c+a\right)\left(c-a\right)}{\left(c+a\right)\left(b+c\right)\left(a+b\right)}\)

\(\dfrac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

24 tháng 6 2021

\(\dfrac{a-b}{1+c^2}+\dfrac{b-c}{1+a^2}+\dfrac{c-a}{1+b^2}\)

\(=\dfrac{a-b}{ab+bc+ca+c^2}+\dfrac{b-c}{ab+bc+ca+a^2}+\dfrac{c-a}{ab+bc+ca+b^2}\)

\(=\dfrac{a-b}{\left(c+a\right)\left(c+b\right)}+\dfrac{b-c}{\left(a+b\right)\left(a+c\right)}+\dfrac{c-a}{\left(b+a\right)\left(b+c\right)}\)

\(=\dfrac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\dfrac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)