K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

Áp dụng bất đẳng thức Svacxo ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)

Tương tự : \(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c};\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)

Dấu = xảy ra khi a=b=c

10 tháng 7 2021

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)(BĐT Cauchy Schawarz)(1)

tương tự \(=>\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c}\left(2\right)\)

\(=>\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\left(3\right)\)

(1)(2)(3)

\(=>3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\left(dpcm\right)\)

14 tháng 5 2017

Áp dụng BĐT \(\left(x+y+z\right)\)\(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)\(\ge9\) \(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\), ta có:

\(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{2b}\ge\dfrac{9}{2a+4b}=\dfrac{9}{2\left(a+2b\right)}\)

\(\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge\dfrac{9}{2\left(b+2c\right)}\)

\(\dfrac{1}{2c}+\dfrac{1}{2a}+\dfrac{1}{2a}\ge\dfrac{9}{2\left(c+2a\right)}\)

Cộng từng vế ta được:

\(\dfrac{3}{2a}+\dfrac{3}{2b}+\dfrac{3}{2c}\ge\dfrac{9}{2\left(a+2b\right)}+\dfrac{9}{2\left(b+2c\right)}+\dfrac{9}{2\left(c+2a\right)}\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9}{2}\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\left(đpcm\right)\)

14 tháng 5 2017

thanks

NV
6 tháng 1 2022

\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)

Tương tự:

\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)

\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)

Cộng vế:

\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)

\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Áp dụng BĐT

\(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\\ \Rightarrow\dfrac{9abc}{a+3a+2c}\\ =\dfrac{9}{\left(a+c\right)\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{4}{2}\) 

Tương tự với 2 BĐT còn lại rồi cộng vế theo vế

=> 9 vế trái

 \(\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\\ +\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{a+b+c}{2}\\ =\dfrac{3\left(a+b+c\right)}{2}\\ \Rightarrow......._{\left(đpcm\right)}\)

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

25 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

14 tháng 1 2022
Cho sao nha nhưng tui ko bít làm
NV
7 tháng 2 2022

\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)

\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 2 2022

cảm ơn thầy ạ

17 tháng 9 2018

Hình như sai đề :

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)

\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)

\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )

Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)

\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)

\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )

CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )

Thay ( * ) và ( * ') vào E , ta được :

\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)

\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)

\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)

\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)

\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)

\(=\dfrac{0}{2}=0\)

Vậy \(E=0\)

16 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a}{2b+2c-a}=\dfrac{3a^2}{3a\left(2b+2c-a\right)}\ge\dfrac{3a^2}{\dfrac{\left(3a+2b+2c-a\right)^2}{4}}\)

\(\dfrac{12a^2}{\left(3a+2b+2c-a\right)^2}\)\(=\dfrac{12a^2}{\left(2a+2b+2c\right)^2}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b}{2a+2c-b}\ge\dfrac{12b^2}{\left(2a+2b+2c\right)^2};\dfrac{c}{2a+2b-c}\ge\dfrac{12c^2}{\left(2a+2b+2c\right)^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{12\left(a^2+b^2+c^2\right)}{4\left(a+b+c\right)^2}\ge\dfrac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)^2}=1\)

Đẳng thức xảy ra khi \(a=b=c\)

16 tháng 6 2017

\(\dfrac{a}{2b+2c-a}+\dfrac{b}{2c+2a-b}+\dfrac{c}{2a+2b-c}\)

\(=\dfrac{a^2}{2ab+2ac-a^2}+\dfrac{b^2}{2bc+2ba-b^2}+\dfrac{c^2}{2ca+2cb-c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)-a^2-b^2-c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+a^2+b^2+c^2-a^2-b^2-c^2}=1\)

Dấu = xảy ra khi a = b = c