K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

a/b+c+d>a/a+b+c+d

b/a+c+d>b/a+b+c+d

c/a+b+d>c/a+b+c+d

d/a+b+c>d/a+b+c+d

mả  a+b+c+d/a+b+c+d=1

=>a/b+c+d+b/a+c+d+c/a+b+d+d/a+b+c> hoac =1

Vay...

21 tháng 7 2020

Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)

Cộng theo vế và a+b+c+d=1 ta có đpcm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)

\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)

21 tháng 7 2020

Bunyakovsky dạng phân thức

15 tháng 6 2017

Ẹt số xui đưa link cũng bị duyệt

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại

\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

Nhân theo vế 4 BDT trên ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

Hay ta có ĐPCM

30 tháng 8 2018

1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

          \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)

          \(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)

         \(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)

Cộng vế theo vế ta được :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)             ( đpcm )

2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :

\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)

Dấu "=" xảy ra <=> b - 1 = 1    <=> b = 2

\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)

Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2

Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)

Dấu "=" xảy ra <=> a = b = 2

2 tháng 1 2017

Cách 1. Áp dụng BĐT AM-GM : 

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\)\(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)

Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)

Áp dụng bất đẳng thức \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với \(x>0,y>0\)thì

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(1\right)\)

Tương tự :\(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(2\right)\)

Cộng\(\left(1\right)\)với \(\left(2\right)\)được

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{a\left(a^2+b^2+c^2+d^2+ad+bc+ad+cd\right)}{\left(a+b+c+d\right)^2}=4B\)

Cần chứng minh \(B\ge\frac{1}{2}\), bất đẳng thức này tương dương với

\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-b\right)^2\ge0\)(đúng)

Dấu "="xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=c\\b=d\end{cases}}\)

23 tháng 9 2017

ta đặt \(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+db}\)

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ac+2bd}\)

mặt khác ta có 

\(\left[\left(a+c\right)+\left(b+d\right)\right]^2=\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)\)

\(=a^2+c^2+b^2+d^2+2ac+2bd+2\left(ab+ad+bc+cd\right)=a^2+c^2+b^2+d^2+ab+ad+cb+cd+\left(2ac+2bd+ab+ad+cb+cd\right)\)

đến đây cậu dùng cô si ta có 

\(a^2+c^2\ge2ac;b^2+d^2\ge2bd\)

cộng vào ta sẽ ra điêu phải chứng minh

cách hơi cùi một chút nhưng chắc là vẫn được

ta có:

\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)

\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)

\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)

\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)

vậy min M=0 khi a=b=c=d

NM
20 tháng 2 2022

ta có \(\frac{a}{1+b-a}+a\left(1+b-a\right)\ge2a\)hay \(\frac{a}{1+b-a}\ge a\left(1+a-b\right)=a\left(2a+c\right)\)

tương tự ta sẽ có :

\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge2a^2+2b^2+2c^2+ab+ac+bc\)

\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\ge\frac{1}{2}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2\)

\(\ge\left(a+b+c\right)^2=1\)

vậy ta  có điều phải chứng minh

dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

NM
23 tháng 2 2022

vì bạn muốn làm bằng BDT Bunhia nên mình làm cách đó nhé : 

ta có : \(\left[a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)\right]\left(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\right)\)

\(\ge\left(a+b+c\right)^2=1\) ( áp dụng Bunhia ) 

nên ta có : \(VT\ge\frac{1}{a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)}=\frac{1}{a\left(2b+c\right)+b\left(2c+a\right)+c\left(2a+c\right)}\)

\(\ge\frac{1}{3\left(ab+bc+ca\right)}\) mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

nên ta có : \(VT\ge\frac{1}{3\times\frac{1}{3}}=1=VP\) vậy ta có đpcm

14 tháng 11 2016

Đề sai rồi

Nếu giả sử a = b =c = d = 2 thì

\(\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}+\frac{2}{2+1}=\frac{8}{3}>2\)