K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{a^4}{b^2+c^2}+\frac{b^4}{c^2+a^2}+\frac{c^4}{a^2+b^2}\right)\left(b^2+c^2+c^2+a^2+a^2+b^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow\frac{a^4}{b^2+c^2}+\frac{b^4}{a^2+c^2}+\frac{c^4}{a^2+b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(\left|a\right|=\left|b\right|=\left|c\right|\)

23 tháng 3 2015

Theo mình nghĩ là có a+b2+c2=0 => a=0; b=0; c=0. thay vào là dc. không biết đúng k, mình thấy khúc thay thì nó =0 luôn mà =D

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

21 tháng 8 2021

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

NV
13 tháng 10 2019

\(\Leftrightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}-7\le0\)

Đặt \(P=\frac{a}{c}+\frac{c}{a}+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}-7\)

Không mất tỉnh tổng quát, giả sử \(a\le b\le c\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Rightarrow ab+bc\ge b^2+ac\Rightarrow\left\{{}\begin{matrix}\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\\1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)

\(\Rightarrow P\le\frac{a}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{a}+2-7=2\left(\frac{a}{c}+\frac{c}{a}\right)-5\)

Do \(1\le a\le c\le2\Rightarrow1\le\frac{c}{a}\le2\)

Đặt \(\frac{c}{a}=x\Rightarrow1\le x\le2\)

\(\Rightarrow P\le2\left(x+\frac{1}{x}\right)-5=\frac{2x^2-5x+2}{x}=\frac{\left(2x-1\right)\left(x-2\right)}{x}\le0\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;2\right);\left(1;2;2\right)\) và các hoán vị

13 tháng 10 2019

=\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=3+\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

áp dụng hệ quả của bđt côsi \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b >0 ta có BĐT cuối cùng luôn đúng

vậy .....

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

28 tháng 11 2023

Ta có \(a+b+c=abc\Leftrightarrow\dfrac{a+b+c}{abc}=1\) \(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)

Lại có \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)

\(\Leftrightarrow2^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) (đpcm)