K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

\(P=\dfrac{bc}{a\left(b+c\right)}+\dfrac{ca}{b\left(c+a\right)}+\dfrac{ab}{c\left(a+b\right)}\)

\(=\dfrac{b^2c^2}{abc\left(b+c\right)}+\dfrac{c^2a^2}{abc\left(c+a\right)}+\dfrac{a^2b^2}{abc\left(a+b\right)}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\ge\dfrac{3abc\left(a+b+c\right)}{2abc\left(a+b+c\right)}=\dfrac{3}{2}\)

Dấu = xảy ra khi \(a=b=c\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
10 tháng 1 2018

Áp dụng BĐT Cauchy

\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)\ge9abc\)

\(\Rightarrow\sqrt{\dfrac{\left(a+b+c\right)\left(ab+bc+ac\right)}{abc}}\ge3\)

\(\Rightarrow P\ge3+\dfrac{4bc}{\left(b+c\right)^2}\)

Ta cần tìm Min của \(3+\dfrac{4bc}{\left(b+c\right)^2}\)

Không mất tính tổng quát giả sử \(b\ge c\)

\(\Rightarrow b+c\le2b\)\(\Leftrightarrow\left(b+c\right)^2\le4b^2\Leftrightarrow\dfrac{4bc}{\left(b+c\right)^2}\ge\dfrac{c}{b}\)

\(b\ge c\Rightarrow\dfrac{c}{b}\ge1\)

Vậy \(3+\dfrac{4bc}{\left(b+c\right)^2}\ge4\)

Dấu đẳng thức xảy ra khi a = b = c

13 tháng 1 2018

Áp dụng BĐT bunyakovsky và AM -GM ta có:

\(\sqrt{\dfrac{\left[a+\left(b+c\right)\right]\left[bc+a\left(b+c\right)\right]}{abc}}\ge\sqrt{\dfrac{a\left(\sqrt{bc}+b+c\right)^2}{abc}}=\dfrac{\sqrt{bc}+b+c}{\sqrt{bc}}=1+\dfrac{b+c}{\sqrt{bc}}\)

\(LHS\ge1+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{4bc}{\left(b+c\right)^2}\ge1+3\sqrt[3]{\dfrac{4bc\left(b+c\right)^2}{4bc\left(b+c\right)^2}}=4\)

Dấu = xảy ra khi a=b=c

11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

31 tháng 8 2017

Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)

\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)

\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế

\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)

18 tháng 6 2018

\(A=3\left(ab+bc+ca\right)+\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\\ =3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\)

Áp dụng BDT: Cô-si dạng Engel:

\(\Rightarrow A=3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\ge3\left(ab+bc+ca\right)+\dfrac{\left(a-b+b-c+c-a\right)^2}{2+4+8}=3\left(ab+bc+ca\right)\left(1\right)\)

\(\text{Ta lại có: }ab+bc+ac\le a^2+b^2+c^2\\ \Leftrightarrow ab+bc+ac+2\left(ab+bc+ac\right)\le a^2+b^2+c^2+2\left(ab+bc+ac\right)\\ \Leftrightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow A\le9\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}a=b=c\\a+b+c=3\\\dfrac{a-b}{2}+\dfrac{b-c}{4}+\dfrac{c-a}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)

Vậy \(A_{Max}=9\) khi \(a=b=c=1\)

18 tháng 6 2018

vầng, cảm ơn nhiều ạ !

14 tháng 10 2018

Ta có: bc(a2+1) = (a+b)(a+c)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) =\(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\)

Áp dụng BĐT Cô-si: \(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+c}+\dfrac{a}{a+c}\right)\)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

CMTT: \(\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{a+c}\right)\)

\(\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\) S \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+a}+\dfrac{a}{c+a}+\dfrac{b}{a+b}+\dfrac{b}{c+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

\(\Rightarrow\) S\(\le\) \(\dfrac{1}{2}.3=\dfrac{3}{2}\)

Vậy Smax = \(\dfrac{3}{2}\)

Dấu "=" xảy ra\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b=c\\a+b+c=abc\end{matrix}\right.\)

\(\Leftrightarrow\) \(a=b=c=\sqrt{3}\)