K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

8 tháng 7 2021

\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Áp dụng bđt Cauchy-Schwarz dạng Engel có:

\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)

\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)

\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)

NV
28 tháng 4 2021

\(P\ge\left(a+b+c\right)^2\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}\right)\)

\(P\ge\left(a+b+c\right)^2\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\right)\)

\(P\ge\left(a+b+c\right)^2\left(\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\dfrac{7}{\dfrac{1}{3}\left(a+b+c\right)^2}\right)=30\)

\(P_{min}=30\) khi \(a=b=c\)

NV
16 tháng 9 2021

\(P=\dfrac{a^3}{b^2+ab+bc+ca}+\dfrac{b^3}{c^2+ab+bc+ca}+\dfrac{c^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}\)

Ta có:

\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge\dfrac{3a}{4}\)

\(\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3b}{4}\)

\(\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3c}{4}\)

Cộng vế:

\(P+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow P\ge\dfrac{1}{4}\left(a+b+c\right)\ge\dfrac{1}{4}.\sqrt{3\left(ab+bc+ca\right)}=\dfrac{\sqrt{3}}{4}\)

16 tháng 9 2021

giúp em giải dấu "=" với ạ :<