K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

11 phút trước (15:52)

Cho a,b >0 và a+b=1. chứng minh rằng: (a+1a )2+(b+1b 2)≥12,5

Mình cần gấp, ai làm nhanh và đúng nhất được 3 ks!

Câu hỏi tương tự Đọc thêm Báo cáo

Toán lớp 9 Bất đẳng thức

VKOOK_BTS

Trả lời

0

Đánh dấu

8 phút trước (15:31)

3 tháng 11 2018

Việc chứng minh BĐT trên \(\Leftrightarrow x+\frac{1}{x}\ge\frac{5}{2}\left(x\ge2\right)\)

Dự đoán dấu "=" xảy ra tại x = 2.Ta có:

\(VT=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3}{4}x\ge2\sqrt{\frac{1x}{4x}}+\frac{3}{4}x\ge1+\frac{3}{4}.2=\frac{5}{2}\)

Áp dụng vào với lưu ý rằng: \(\frac{1}{x}=\frac{1}{\frac{1}{x}}\) ,ta có:

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\left(\frac{5}{2}\right)^2+\left(\frac{5}{2}\right)^2=\frac{25}{4}+\frac{25}{4}=\frac{25}{2}=12,5\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{\frac{1}{a}}=\frac{1}{\frac{1}{b}}=\frac{1}{\frac{1}{2}}=2\)

Theo đề bài thì \(a+b=1\) suy ra \(a=b=\frac{1}{2}\)

3 tháng 11 2018

Bạn sửa chỗ này lại giúp mình : "Áp dụng vào với lưu ý rằng \(x=\frac{1x}{1}=\frac{1}{\frac{1}{x}}\),ta có" giúp mình nhé! đánh máy thiếu :v

27 tháng 5 2020

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

27 tháng 5 2020

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)

26 tháng 3 2017

Bài 1:Với \(ab=1;a+b\ne0\) ta có: 

\(P=\frac{a^3+b^3}{\left(a+b\right)^3\left(ab\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4\left(ab\right)^2}+\frac{6\left(a+b\right)}{\left(a+b\right)^5\left(ab\right)}\)

\(=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

\(=\frac{a^2+b^2-1}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2-1\right)\left(a+b\right)^2+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2-1\right)\left(a^2+b^2+2\right)+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2\right)^2+4\left(a^2+b^2\right)+4}{\left(a+b\right)^4}=\frac{\left(a^2+b^2+2\right)^2}{\left(a+b\right)^4}\)

\(=\frac{\left(a^2+b^2+2ab\right)^2}{\left(a+b\right)^4}=\frac{\left[\left(a+b\right)^2\right]^2}{\left(a+b\right)^4}=1\)

Bài 2: \(2x^2+x+3=3x\sqrt{x+3}\)

Đk:\(x\ge-3\)

\(pt\Leftrightarrow2x^2-3x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)

\(\Leftrightarrow2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)

\(\Leftrightarrow2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=x\\\sqrt{x+3}=2x\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\ge0\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\left(x\ge0\right)\\4x^2-x-3=0\left(x\ge0\right)\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\\x=1\end{cases}\left(x\ge0\right)}\)

Bài 4:

Áp dụng BĐT AM-GM ta có: 

\(2\sqrt{ab}\le a+b\le1\Rightarrow b\le\frac{1}{4a}\)

Ta có: \(a^2-\frac{3}{4a}-\frac{a}{b}\le a^2-\frac{3}{4a}-4a^2=-\left(3a^2+\frac{3}{4a}\right)\)

\(=-\left(3a^2+\frac{3}{8a}+\frac{3}{8a}\right)\le-3\sqrt[3]{3a^2\cdot\frac{3}{8a}\cdot\frac{3}{8a}}=-\frac{9}{4}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

16 tháng 9 2018

\(\frac{x^4-5x+4}{x^2-2}=5\left(x-1\right)\)

\(\Leftrightarrow\frac{x^4-5x+4}{x^2-2}\left(x^2-2\right)=5\left(x-1\right)\left(x^2-2\right)\)

\(\Leftrightarrow x^4-5x+4=5\left(x-1\right)\left(x^2-2\right)\)

\(\Rightarrow\hept{\begin{cases}x=\pm1\\x=2\\x=3\end{cases}}\)

P/s: ko chắc

16 tháng 9 2018

ĐKXĐ : X2 \(\ne\)2

Ta có: \(\frac{x^4-5x+4}{x^2-2}\)\(5\left(x-1\right)\)\(\Leftrightarrow\frac{\left(x-1\right)\left(x^3+x^2+x-4\right)}{x^2-2}=5\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^3+x^2+x-4}{x^2-2}-5\right)\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\frac{x^3+x^2+x-4}{x^2-2}-5=0\end{cases}}\)

\(+x-1=0\Rightarrow x=1\)

+)\(\frac{x^3+x^2+x-4}{x^2-2}-5=0\Leftrightarrow x^3+x^2+x-4-5x^2+10=0\)

\(\Leftrightarrow x^3-4x^2+x+6=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x-3\right)=0\)\(\Leftrightarrow x=2\)hoặc \(x=3\)

hoặc x=-1

Bạn tự kết luận nhé..

16 tháng 9 2018

( 99 - 1 ) : 2 + 1 = 50 ( số )

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

\(M=ab+\frac{1}{a^2}+\frac{1}{b^2}\ge ab+\frac{2}{ab}\ge2\sqrt{2}\)

16 tháng 9 2018

Ta có:

\(E\: =x^2+\frac{2x}{y}+\frac{1}{y^2}+y^2+\frac{2y}{x}+\frac{1}{x^2}=\left(x^2+y^2\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\Rightarrow E\ge4+4+\frac{1}{x^2}+\frac{1}{y^2}=8+\frac{x^2+y^2}{x^2y^2}\)

Do:   \(4=x^2+y^2\ge2xy\Rightarrow xy\le2\Rightarrow x^2y^2\le4\Rightarrow\frac{4}{x^2y^2}\ge1\)

\(\Rightarrow E\ge8+1=9\)

Dấu bằng xảy ra khi x=y=\(\sqrt{2}\)

27 tháng 9 2020

Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)

Áp dụng BĐT AM-GM ta có:

\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)

Suy ra BĐT đã cho là đúng nếu ta chứng minh được

\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)

Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)

Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

27 tháng 9 2020

Bài 3:

Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)

Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)

Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:

\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)

Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)

\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề

Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị

3 tháng 6 2017

Áp dụng BĐT Cosi:

\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}>=4\sqrt[4]{\frac{\left(a+2\right)\left(b+2\right)}{27.27.9}.\frac{a^4}{\left(a+2\right)\left(b+2\right)}}...\)

\(>=\frac{4}{9}a\)

Tương tự

\(=>VT>=\frac{4}{9}\left(a+b+c\right)-\frac{3}{9}-2\left(\frac{a+2}{9}+\frac{b+2}{9}+\frac{c+2}{9}\right)=\frac{1}{3}.\)

Dấu "="xảy ra khi a=b=c=1

3 tháng 7 2019

\(3=a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\)\(abc\le1\)

\(VT=\frac{a^3\left(a+1\right)+b^3\left(b+1\right)+c^3\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a^4+b^4+c^4+a^3+b^3+c^3}{a+b+c+ab+bc+ca+abc+1}\)

\(\ge\frac{\frac{\left(a^2+b^2+c^2\right)^2}{3}+\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}}{\frac{\left(a+b+c\right)^2}{3}+5}=\frac{\frac{\frac{\left(a+b+c\right)^4}{9}}{3}+\frac{\frac{\left(a+b+c\right)^4}{9}}{3}}{8}\)

\(=\frac{\frac{\frac{3^4}{9}}{3}}{4}=\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

2 tháng 7 2019

đề viết gì thế bạn ?