K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

Ta có\(a>b-c\)

Mà a;b;c là độ dài 3 cạnh của 1 tam giác nên a;b;c>0

\(\Rightarrow a^2>\left(b-c\right)^2\)

\(\Leftrightarrow a^2>b^2-2bc+c^2\)

\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)

Vậy \(a^2-b^2-c^2+2bc>0\)

22 tháng 10 2021

\(a^2-b^2-c^2+2bc\)

\(=a^2-\left(b-c\right)^2\)

\(=\left(a-b+c\right)\left(a+b-c\right)\)

NV
7 tháng 5 2021

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

BĐT đã cho tương đương:

\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)

Vậy BĐT đã cho đúng

9 tháng 8 2018

Bài toán này chỉ chứng minh được với điều kiện đó là tam giác vuông với 2 cạnh của góc vuông là a & b. 
Lúc đó ta sẽ có: 
a^2 + b^2 = c^2 
Suy ra: 
a^2 + b^2 - c^2 = 0 (1) 
Đề bài là: 
M = 4a^2b^2 – ( a^2+ b^2 – c^2) 
Thay (1) vào: 
M = 4a^2b^2 - 0 
M = 4a^2b^2 
M > 0 (hay M luôn dương). 

9 tháng 8 2018

Ta có \(a^2-b^2-c^2-2bc\)

\(=a^2-\left(b^2+2bc+c^2\right)\)

\(=a^2-\left(b+c\right)^2\)

Ta có \(a^2\ge0;\left(b+c\right)^2\ge0\)nên \(a^2-\left(b+c\right)^2\ge0\)

Khi đó hiệu trên luôn dương 

Vậy....

14 tháng 6 2021

BĐT cần CM tương đương:

\(3-VT\ge1\)

\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)

\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)

\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)

Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)

... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng

=> BĐT trên đúng

=> đpcm

Dấu "=" xảy ra khi: a = b = c

19 tháng 7 2018

a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)

                            = a^2 -(b-c)^2

                            = (a-b+c)(a+b-c)

Theo bất đẳng thức tam giác, ta có: 

a+c>b và a+b>c

Suy ra: a-b+c >0 và a+b-c >0

Do đó: (a-b+c)(a+b-c) >0

Vậy a^2 - b^2 -c^2 + 2bc >0

Chúc bạn học tốt.