K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

\(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)

\(P=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{ca}{b\left(a+b+c\right)+ca}}\)

\(P=\sqrt{\dfrac{ab}{ac+bc+c^2+ab}}+\sqrt{\dfrac{bc}{a^2+ab+ac+bc}}+\sqrt{\dfrac{ca}{ab+b^2+bc+ca}}\)

\(P=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{a}{a+c}+\dfrac{b}{b+c}}{2}\\\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\\\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{c}{b+c}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\left(\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)}{2}\)

\(\Rightarrow VT\le\dfrac{\dfrac{a+c}{a+c}+\dfrac{b+c}{b+c}+\dfrac{a+b}{a+b}}{2}=\dfrac{3}{2}\)

\(\Rightarrow P\le\dfrac{3}{2}\)

Vậy \(P_{max}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

10 tháng 3 2017

cảm ơn nhìu nhá ^^

20 tháng 5 2018

Ta có: \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}+\dfrac{ca}{\sqrt{\left(a+b+c\right)b+ca}}+\dfrac{ab}{\sqrt{\left(a+b+c\right)+ab}}\)\(=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}+\dfrac{ca}{\sqrt{ab+b^2+bc+ca}}+\dfrac{ab}{\sqrt{c^2+ac+ab+bc}}\)\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{ca}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\)\(\le\dfrac{1}{2}\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{a+c}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+b}+\dfrac{a^2}{a+c}+\dfrac{b^2}{b+c}\right)\)

(Theo BĐT cauchy với \(a,b,c>0\) )

\(\le\dfrac{1}{2}\left(\dfrac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\right)=\dfrac{1}{2}.\left(\dfrac{6^2}{4.3}\right)=\dfrac{3}{2}\)

(theo BĐT cauchy schwarz)

Vậy Max P =\(\dfrac{3}{2}\Leftrightarrow a=b=c=1\)

20 tháng 5 2018

Hình như bạn áp dụng BĐT.Cauchy Schwarz sai

21 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{ab}{\sqrt{3c+ab}}=\dfrac{ab}{\sqrt{\left(a+b+c\right)c+ab}}=\dfrac{ab}{\sqrt{c^2+ab+bc+ca}}\)

\(=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\le\dfrac{1}{2}\left(a+b+c\right)=\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

24 tháng 5 2018

tại sao dấu = xảy ra khi a=b=c=1

vui

5 tháng 6 2018

Em nghĩ đề là a chứ không phải 2a ;v

\(P=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\\ =\dfrac{a}{\sqrt{ab+bc+ac+a^2}}+\dfrac{b}{\sqrt{ab+bc+ac+b^2}}+\dfrac{c}{\sqrt{ab+bc+ac+c^2}}\\ =\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\\ \le\left(\dfrac{a}{2\left(a+b\right)}+\dfrac{a}{2\left(a+c\right)}\right)+\left(\dfrac{b}{2\left(a+b\right)}+\dfrac{b}{2\left(b+c\right)}\right)+\left(\dfrac{c}{2\left(a+c\right)}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{2\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{4}\)

Áp dụng bđt : \(\dfrac{1}{xy}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}\)

Dấu "=" xảy ra khi a=b=c=1/căn 3

17 tháng 12 2018

Dự đoán điểm rơi b=c=ka. Ta có:

\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM-GM: \(\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+b}+\dfrac{a}{a+c}\)

\(\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}=\dfrac{b.\sqrt{\dfrac{2k}{k+1}}}{\sqrt{\left(b+c\right).\dfrac{2k\left(a+b\right)}{k+1}}}\le\dfrac{b}{2}\sqrt{\dfrac{2k}{k+1}}.\left(\dfrac{1}{b+c}+\dfrac{\left(k+1\right)}{2k\left(a+b\right)}\right)\)

\(\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\dfrac{c}{2}.\sqrt{\dfrac{2k}{k+1}}\left(\dfrac{1}{b+c}+\dfrac{k+1}{2k\left(a+c\right)}\right)\)

\(\Rightarrow VT\le\dfrac{a}{a+b}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{b}{a+b}+\dfrac{a}{a+c}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{c}{a+c}+\sqrt{\dfrac{k}{2k+2}}\)

Tìm k sao cho \(\sqrt{\dfrac{k+1}{8k}}=1\Rightarrow k=\dfrac{1}{7}\)

Do đó trình bày lại bài toán ngắn gọn như sau:

Áp dụng BĐT AM-GM:

\(VT=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{2b}{\sqrt{4\left(b+c\right).\left(b+a\right)}}+\dfrac{2c}{\sqrt{4\left(b+c\right).\left(a+b\right)}}\)

\(\le\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{4\left(b+c\right)}+\dfrac{b}{a+b}+\dfrac{c}{4\left(b+c\right)}+\dfrac{c}{a+c}\)

\(=1+1+\dfrac{1}{4}=\dfrac{9}{4}\)

Dấu = xảy ra khi \(a=7b=7c=\dfrac{7}{\sqrt{15}}\)

7 tháng 1 2018

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\end{matrix}\right.\)\(\Rightarrow x+y+z=xyz\)

\(\Rightarrow P=xy+yz+xz-\sqrt{x^2+1}-\sqrt{y^2+1}-\sqrt{z^2+1}\)

Khi \(a=b=c=\frac{1}{\sqrt{3}}\Rightarrow x=y=z=\sqrt{3}\Rightarrow P=3\)

Ta sẽ chứng minh \(P=3\) là giá tri nhỏ nhất của \(P\)

\(\Rightarrow BDT\Leftrightarrow xy+yz+xz-3\ge\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)

Ta có BĐT \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2y^2z^2\)

\(\Leftrightarrow\left(xy+yz+xz\right)^2\ge x^2y^2z^2+2xyz\left(x+y+z\right)\)\(=3\left(x+y+z\right)^2\)

Xét \(VT^2=\left(xy+yz+xz-3\right)^2=\left(xy+yz+xz\right)^2-6\left(xy+yz+xz\right)+9\)

\(\ge3\left(x+y+z\right)^2-6\left(xy+yz+xz\right)+9\)\(=3\left(x^2+y^2+z^2\right)+9\left(1\right)\)

\(VP^2\le\left(1+1+1\right)\left(x^2+y^2+z^2+3\right)=3\left(x^2+y^2+z^2\right)+9\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM. Vậy \(P_{min}=3\Rightarrow a=b=c=\frac{1}{\sqrt{3}}\)

16 tháng 5 2017

Lợi dụng Cauchy-Schwarz' inequality ta có:

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}\)

\(=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự ta cũng có:

\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ca}{\sqrt{ca+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{bc+ca}{a+b}+\dfrac{ab+ca}{b+c}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{b+c}\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\cdot2=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

20 tháng 5 2017

Ta có P=\(\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\dfrac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\dfrac{ac}{\sqrt{ac+\left(a+b+c\right)b}}\)

=\(\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}+\dfrac{bc}{\sqrt{bc+ac+ab+a^2}}+\dfrac{ac}{\sqrt{ac+ab+bc+b^2}}\)

=\(\dfrac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}+\dfrac{bc}{\sqrt{b\left(a+c\right)+a\left(a+c\right)}}+\dfrac{ac}{\sqrt{c\left(a+b\right)+b\left(a+b\right)}}\)

=\(\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\dfrac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\dfrac{ac}{\sqrt{\left(a+b\right)\left(c+b\right)}}\)

áp dụng bđt Cói ta có:

\(\sqrt{\left(a+c\right)\left(b+c\right)}\)\(\le\)\(\dfrac{2+c}{2}=1+\dfrac{c}{2}\)

\(\sqrt{\left(b+á\right)\left(c+a\right)}\)

31 tháng 3 2017

Ta có \(\sum\limits^{ }_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum\limits^{ }_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\sum\limits^{ }_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

Sử dụng bất đẳng thức Cauchy-Schwarz và AM-GM ta có:

\(\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)

Cộng hai bất đẳng thức ta được:

\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ac}}\ge3\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)