K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

\(BĐT\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dễ thấy BĐt trên đúng theo Cô si:

\(a+b\ge2\sqrt{ab}\)

Thiết lập cac BĐT tương tự và nhân lại ta có đpcm.

3 tháng 5 2016

Biết là Cô-si,...làm giùm....

25 tháng 3 2018

1) xét hiệu

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\ge0\)

<=> \(\dfrac{b\left(a+b\right)}{ab\left(a+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(a+b\right)}-\dfrac{4ab}{ab\left(a+b\right)}\ge0\)

=> b(a+b)+a(a+b)-4ab ≥ 0

<=> ab+b2+a2+ab-4ab ≥ 0

<=> a2 -2ab+b2 ≥ 0

<=> (a-b)2 ≥ 0 (luôn đúng )

=> đpcm

25 tháng 3 2018

2)Ta có:\(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

TT\(\Rightarrow\left(b+c\right)^2\ge4bc;\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\ge64a^2b^2c^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

1a)\(a^2+b^2\ge\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{1}{4}\)(1)

Lại có:\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow\left(1\right)\) đúng\(\Rightarrowđpcm\)

1b)\(a^2+b^2+c^2\ge\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{1}{6}\)(2)

Lại có:\(\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{\left(a+b+c\right)^2}{6}=\dfrac{1}{6}\)

\(\Rightarrow\left(2\right)\) đúng\(\Rightarrowđpcm\)

2b)Ta có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(bđt phụ)

\(\Leftrightarrow ab+bc+ca\le\dfrac{4^2}{3}=\dfrac{16}{3}\)

\(\Rightarrow MAXA=\dfrac{16}{3}\Leftrightarrow x=y=z=\dfrac{4}{3}\)

5 tháng 4 2020

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)

2 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz cho 3 số dương a;b;c ta có :

\(a+b\ge2\sqrt{ab}\) (dấu "=" xảy ra \(\Leftrightarrow a=b\) )

\(b+c\ge2\sqrt{bc}\) (dấu "=" xảy ra \(\Leftrightarrow b=c\) )

\(c+a\ge2\sqrt{ca}\) (dấu "=" xảy ra \(\Leftrightarrow a=c\) )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8abc\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

15 tháng 5 2018

Dùng BĐT phụ : \(\left(x+y\right)^2\ge4xy\)

Ta có : \(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\); \(\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2=\left(8abc\right)^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(dpcm\right)\)

Dấu "=" xảy ra khi a = b = c

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

NV
6 tháng 5 2021

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

NV
6 tháng 5 2021

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

4 tháng 4 2018

Áp dụng BĐT cô si cho 2 số không âm

\(b+c\ge2\sqrt{bc}\)

<=>\(\left(b+c\right)^2\ge4bc\) (1)

Áp dụng BĐT cô si cho 2 số không âm

\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

<=>\(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

<=>\(1\ge4a\left(b+c\right)\) (2)

nhân (1) với (2) ta đc

\(\left(b+c\right)^2\ge16abc.\left(b+c\right)\)

<=>\(b+c\ge16abc\) (đpcm)

30 tháng 6 2019

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{matrix}\right.\)