K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(\frac{a}{bc\left(c+a\right)}+\frac{b}{ca\left(a+b\right)}+\frac{c}{ab\left(b+c\right)}\)

\(=\frac{1}{abc}\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)

\(\ge\frac{1}{abc}.\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{abc}.\frac{\left(a+b+c\right)}{2}\)

\(\ge\frac{27}{\left(a+b+c\right)^3}.\frac{a+b+c}{2}=\frac{27}{2\left(a+b+c\right)^2}\)

20 tháng 11 2018

Mình áp dụng BĐT Bunhiacopski được  ko bạn?

5 tháng 8 2017

Nothing of ý tưởng cho câu này :<

6 tháng 8 2017

Quy đồng thần chưởng thôi :|, tua qua đoạn quy đồng mẫu tử đi nhé :v

\(BDT\Leftrightarrow\frac{\left(a^4c^2+a^2b^4+b^2c^4-a^3bc^2-a^2b^3c-ab^2c^3\right)+\left(a^3b^3+a^3c^3+b^3c^3-3a^2b^2c^2\right)}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Dễ thấy: \(abc\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\forall a,b,c\)

Giờ cần chứng minh \(a^4c^2+a^2b^4+b^2c^4\ge a^3bc^2+a^2b^3c+ab^2c^3\)

Và \(a^3b^3+a^3c^3+b^3c^3\ge3a^2b^2c^2\)

Áp dụng BĐT AM-GM ta có: 

\(a^3b^3+a^3c^3+b^3c^3\ge3\sqrt[3]{\left(abc\right)^6}=3a^2b^2c^2\) (đúng)

Ko mất tính tq giả sử \(a\ge b\ge c\)

Khi đó \(a^4c^2+a^2b^4+b^2c^4\ge a^3bc^2+a^2b^3c+ab^2c^3\)

\(\Leftrightarrow c^2\left(a-b\right)\left(a^3-b^2c\right)+b^2\left(b-c\right)\left(a^2b-c^3\right)\ge0\) (đúng)

Hay ta có ĐPCM 

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh