K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{x}=\left(\frac{1}{2}-\frac{1}{y}\right)+\left(\frac{1}{2}-\frac{1}{z}\right)\)\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\)

Áp dụng BĐT Cauchy ta có \(\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\ge\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\)

Tương tự : \(\frac{1}{y}\ge\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{xz}}\) ; \(\frac{1}{z}\ge\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\)

Nhân theo vế được : \(\frac{1}{xyz}\ge\frac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

BẠN XEM BÀI NÀY, BÀI TRÊN MÌNH VIẾT THỪA DÒNG CUỐI.

10 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{x}=\left(\frac{1}{2}-\frac{1}{y}\right)+\left(\frac{1}{2}-\frac{1}{z}\right)\)\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\)

Áp dụng BĐT Cauchy ta có \(\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\ge\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\)

Tương tự : \(\frac{1}{y}\ge\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{xz}}\) ; \(\frac{1}{z}\ge\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\)

Nhân theo vế được : \(\frac{1}{xyz}\ge\frac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

\(\frac{1}{xyz}\)

27 tháng 9 2018

\(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Tương tụ co:

\(\hept{\begin{cases}\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\\\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\end{cases}}\)

\(\Rightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Leftrightarrow xyz\le\frac{1}{8}\)

19 tháng 7 2017

Đừng để bị đánh lừa, đưa bài toán này về cơ bản bằng cách đặt \(\left(x^2+2;y^2+2;z^2+2\right)\rightarrow\left(a,b,c\right)\)

thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{3}\).tìm max của \(sigma\frac{1}{\sqrt{a-2}}\) đến đây nhường chủ tus 

23 tháng 9 2017

Nhìn lại lịch sử và đào ra bài này :v cái đó đặt ẩn rồi chuyển qua cũng k đẹp đâu, tham khảo :|

enter image description here

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều

\(\hept{\begin{cases}x,y,z>0\\x+y+z=xyz\end{cases}}\)

\(\Rightarrow\frac{1}{xy} +\frac{1}{yz}+\frac{1}{zx}=1\)

Có : \(\frac{1}{\sqrt{1+x^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+x^2}}\le\frac{1}{2.\sqrt{\frac{x^2y}{xyz}}}\le\frac{1}{2}\)

\(\frac{1}{\sqrt{1+y^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+y^2}}\le\frac{1}{2\sqrt{\frac{y^2z}{xyz}}}\le\frac{1}{2}\)

\(\frac{1}{\sqrt{1+z^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+z^2}}\le\frac{1}{2\sqrt{\frac{z^2x}{xyz}}}\le\frac{1}{2}\)

\(\Rightarrow\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Vậy P max = 3/2

21 tháng 8 2016

\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)

Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)

\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)

bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)

22 tháng 8 2016

Dòng kế cuối sửa lại thành \(\frac{8\left(z+2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\) nhé.

NV
7 tháng 4 2019

\(VT=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{xy+xz+yz+x^2}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)\(\Rightarrow VT\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\). Vậy ta cần chứng minh

\(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\), ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng. Vậy ta có đpcm

24 tháng 11 2016

1) BĐT chứng minh ⇔∑(x2y2+y2x2)≥212
Ta có x2y2+y2x2≥2
Ta sẽ đi chứng minh y2z2+z2y2+z2x2+x2z2≥172
Ta có y2z2+x2z2≥12(xz+yz)2
z2y2+z2x2≥12(4zx+y)2
Đặt a=zx+y≥1
Ta sẽ chứng minh 12a2+8a2≥172
Dễ thấy bđt này đúng suy ra đpcm

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)(dùng AM-GM giải quyết chỗ này)

Vậy ta cần chứng minh \(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\),ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng.Vậy ta có đpcm