K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Ta có \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ac+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(tm\right)\\a=b=c\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a+b+c=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\)

Ta có \(P=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\Leftrightarrow abc.P=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b+c-a\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)=b\left(a-b\right)\left(a-c\right)-c\left(b-a\right)\left(c-a\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\Leftrightarrow P=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}\)\(Q=\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).Q=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-\left(c+b\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-c\left(a-b\right)\left(c-a\right)-b\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(c-a\right)\left(2b-c-a\right)-b\left(a-b\right)\left(2c-a-b\right)=c\left(c-a\right)3b-b\left(a-b\right)3c=3bc\left(b+c-2a\right)=-9abc\Leftrightarrow Q=\dfrac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)Vậy \(P.Q=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}.\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=9\)

NV
9 tháng 8 2021

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

NV
21 tháng 3 2022

Ta có:

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)

\(\ge2a+2b+2c+2ab+2bc+2ca=12\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)

\(P\ge a^2+b^2+c^2\ge3\)

\(P_{min}=3\) khi \(a=b=c=1\)

21 tháng 7 2018

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd-b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abc^2-abd^2+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ac-bd=0\\ad-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\) (ĐPCM)

NV
21 tháng 8 2021

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 8 2021

thx, appreciate it