K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

undefined

CHÚC BẠN HỌC TỐThaha

26 tháng 5 2021

Thanksundefined

AH
Akai Haruma
Giáo viên
22 tháng 4 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(3=x^2+y^2+\frac{1}{xy}\geq 2xy+\frac{1}{xy}\)

Đặt \(xy=t\Rightarrow 3\geq 2t+\frac{1}{t}\)

\(\Leftrightarrow 3t\geq 2t^2+1\Leftrightarrow 2t^2-3t+1\leq 0\)

\(\Leftrightarrow (2t-1)(t-1)\leq 0\Rightarrow \frac{1}{2}\leq t\leq 1\)

Với \(t=xy\leq 1\) ta có bổ đề sau:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\leq \frac{2}{xy+1}(*)\)

Việc chứng minh bổ đề trên rất đơn giản. Thực hiện biến đổi tương đương và rút gọn ta thu được:

\((*)\Leftrightarrow (xy-1)(x-y)^2\leq 0\) (luôn đúng do \(xy\leq 1\) )

Áp dụng bổ đề trên vào bài toán đã cho:

\(P=2\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}\right)-\frac{3}{2xy+1}\leq \frac{4}{xy+1}-\frac{3}{2xy+1}\)

\(\Leftrightarrow P\leq \frac{4}{t+1}-\frac{3}{2t+1}\)

Ta sẽ chứng minh \(\frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)

\(\Leftrightarrow \frac{5t+1}{2t^2+3t+1}\leq \frac{7}{6}\)

\(\Leftrightarrow 30t+6\leq 14t^2+21t+7\)

\(\Leftrightarrow 14t^2-9t+1\geq 0\)

\(\Leftrightarrow (2t-1)(7t-1)\geq 0\)

BĐT trên luôn đúng do \(t\geq \frac{1}{2}\)

Như vậy: \(P\leq \frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)

Vậy \(P_{\max}=\frac{7}{6}\). Dấu bằng xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

22 tháng 4 2018

tks

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

15 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)

19 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2

≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2 

=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2 

≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82

Dấu "=" xảy ra khi: x=y=z=13