K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{\sqrt{AB}}=\frac{2}{2\sqrt{AB}}\ge\frac{2}{A+B}\)(đpcm)

p/s: tham khảo

       chúc bn hk tốt

25 tháng 10 2016

Không làm mất tính tổng quát của bài toán, giả sử \(a\ge b\ge c\)(1)

Có \(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}=\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

Từ (1) => \(\hept{\begin{cases}\frac{2}{a}\le\frac{1}{a}+\frac{1}{b}\\\frac{2}{b}\le\frac{1}{b}+\frac{1}{c}\\\frac{2}{c}\le\frac{1}{a}+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{\frac{2}{a}}\le\sqrt{\frac{1}{a}+\frac{1}{b}}\\\sqrt{\frac{2}{b}}\le\sqrt{\frac{1}{b}+\frac{1}{c}}\\\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{a}+\frac{1}{c}}\end{cases}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)

Ta có đpcm

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

18 tháng 6 2017

    \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

                                             \(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(c+a+b\right)}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

                                                 \(\Rightarrow dpcm\)

9 tháng 8 2019

<=>  \(a+b\ge2\sqrt{ab}\)

<=> \(a+b-2\sqrt{ab}\ge0\)

<=. \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng )

dấu = khi a=b

26 tháng 7 2016

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)

<=>\(a+b-2\sqrt{ab}\ge0\)

<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

=>dpcm

17 tháng 9 2020

Mình chỉ thấy duy nhất cái đẳng thức.

3 tháng 12 2019

Nhìn giả thiết thấy nản quả:(

BĐT \(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(ab+bc+ca\right)\) (nhân ab +bc +ca vào hai vế)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(a+b+c\right)\) (chú ý giả thiết ab + bc +ca = a + b +  c)

\(VT=\Sigma_{cyc}\frac{ab\left(a+b\right)}{a^2+b^2}+\Sigma_{cyc}\frac{c\left(a+b\right)^2}{a^2+b^2}\)

\(\le\Sigma_{cyc}\frac{ab\left(a+b\right)}{2ab}+\Sigma_{cyc}\frac{2c\left(a^2+b^2\right)}{a^2+b^2}=3\left(a+b+c\right)\)

Vậy ta có đpcm.Đẳng thức xảy ra khi a = b = c