K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

\(S_{ABCD}=S_{ABED}+S_{BEC}=2S_{ABED}=2.6.9=108cm^2\)

22 tháng 2 2020

A D B E C 45 45

27 tháng 7 2017

khó quá man

27 tháng 7 2017

Qua M kẻ đường thẳng //BC cắt lần lượt AB, CD tại F, G
ta có △MDG=△MAF△MDG=△MAF (g, c, g) (1)
có SABCD=SABCGM+SMDGSABCD=SABCGM+SMDG
=SABCGM+SMAF=SABCGM+SMAF (do (1))
=SBCGF=SBCGF (2)
mà BCGF là hình bình hành nên
SBCGF=BC.MESBCGF=BC.ME (3)
từ (2, 3) =>đpcm

Từ M là trung điểm của AD kẻ ME vuông góc với BC tại E. Chứng minh diện tích hình thang ABCD= ME.BC.png

10 tháng 3 2020

Bài 1:

A B C D O M N P Q

a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)

\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)

CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)

\(NP=\frac{1}{2}BC\left(3\right)\)

\(PQ=\frac{1}{2}DC\left(4\right)\)

Mà AB=BC=CD=DA (tc) (5)

Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)

Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb)  (6)

Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)

\(\Rightarrow MQ\perp MN\)

\(\Rightarrow\widehat{QMN}=90^0\)(7) 

Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )

b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)

mà \(AD=16\left(cm\right)\)

\(\Rightarrow MQ=8\left(cm\right)\)

\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)

\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)

Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)

10 tháng 3 2020

A B D C O K H

Kẻ \(BH\perp AD,CK\perp AD\)

\(\Rightarrow BH//CK\)

Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )

Xét tam giác ABD và tam giác ACD có:

2 đường cao BH,CK = nhau , đáy AD chung

\(\Rightarrow S_{ABD}=S_{ACD}\)

\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)

\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)

PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn

21 tháng 12 2018

giúp mình với sắp thi rồi

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M,...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0