K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

Đề<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=6abc

<=>a^2+b^2+c^2-ab-bc-ca=3abc 

nhân cả hai vế với a+b+c+1 ta đc câu trả lời 

chúc bạn học tốt

cho mình hỏi ai còn cách khác bài bạn cậu chủ họ Lương thì gợi ý giúp mình vs nhé.

tks!

25 tháng 9 2017

Ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)

\(\Leftrightarrow a^2+b^2+c^2-\left(ab+bc+ac\right)=3abc\)

\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)=3abc\)

Đặt \(\left(a+b+c,ab+bc+ac,abc\right)=\left(p,q,r\right)\)

\(\Rightarrow p^2-3q=3r\)

Khi đó \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ac\right)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=p^3+3pq+3r=p\left(p^2-3q\right)+3r=3pr+3r\)

Vậy .....

Chúc bạn học tốt!

Chép mạng

AH
Akai Haruma
Giáo viên
12 tháng 9 2017

Lời giải:

Ta có:

\((a-b)^2+(b-c)^2+(c-a)^2=6abc\)

\(\Leftrightarrow a^2+b^2+c^2-(ab+bc+ac)=3abc\)

\(\Leftrightarrow (a+b+c)^2-3(ab+bc+ac)=3abc\)

Đặt \((a+b+c,ab+bc+ac,abc)=(p,q,r)\)

\(\Rightarrow p^2-3q=3r\)

Khi đó, \(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(\Leftrightarrow a^3+b^3+c^3=(a+b+c)^3-3(a+b+c)(ab+bc+ac)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=p^3-3pq+3r=p(p^2-3q)+3r=3pr+3r\)

Vậy \(a^3+b^3+c^3=3abc(a+b+c+1)\)

Chắc bạn viết thiếu.

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

Lời giải:

Ta có:

$a^3+b^3+c^3-3abc=(a+b)^3-3ab(a+b)+c^3-3abc$

$=(a+b)^3+c^3-3ab(a+b+c)$

$=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)$

$=(a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)$

$=\frac{1}{2}(a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ac)$

$=\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$

$=\frac{1}{2}(a+b+c).6abc=3abc(a+b+c)$

$\Rightarrow a^3+b^3+c^3=3abc(a+b+c+1)$ (đpcm)

4 tháng 3 2018

=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )

=> B≥33√2·xy ·2·yz ·2·zx =33√8=6 

( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy  và 2 cái kia tương tự vào )

=> Min B=6

Mình nhầm chỗ câu b, sửa lại là :

B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )

Bạn làm tương tự => B≥3√2.

24 tháng 1 2022

- Tham khảo sai rồi bé à.

 Châu ơi!đăng làm j z

30 tháng 8 2020

Chia cả 2 vế của giả thiết cho a,b,c ta được : 

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\leftrightarrow\)khi đó bài toán trở thành :

\(xy+yz+zx+x+y+z=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Sử dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}< =>x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(*)

Tiếp tục sử dụng AM-GM ta có : 

\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\z^2+x^2=2\sqrt{z^2x^2}=2zx\end{cases}< =>2\left(x^2+y^2+z^2\right)\ge}2\left(xy+yz+zx\right)\)(**)

Cộng theo vế bất đẳng thức (*) và (**) ta được : 

\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+zx+x+y+z\right)=2.6=12\) 

\(< =>x^2+y^2+z^2+1\ge\frac{12}{3}=4< =>x^2+y^2+z^2\ge3\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)

NV
13 tháng 5 2020

\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)

Ta cần chứng minh: \(x^2+y^2+z^2\ge3\)

Thật vậy:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

Cộng vế với vế:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;1\right)\) hay \(\left(a;b;c\right)=\left(1;1;1\right)\)